Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 3675



Upload your image

DSS Images   Other Images

Related articles

Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation
We estimate minimum energy magnetic fields (Bmin) for asample of galaxies with measured gas surface densities, spanning morethan four orders of magnitude in surface density, from normal spirals toluminous starbursts. We show that the ratio of the minimum energymagnetic pressure to the total pressure in the ISM decreasessubstantially with increasing surface density. For the ultraluminousinfrared galaxy Arp 220, this ratio is ~10-4. Therefore, ifthe minimum energy estimate is applicable, magnetic fields in starburstsare dynamically weak compared to gravity, in contrast to normalstar-forming spiral galaxies. We argue, however, that rapid cooling ofrelativistic electrons in starbursts invalidates the minimum energyestimate. We assess a number of independent constraints on the magneticfield strength in starburst galaxies. In particular, we argue that theexistence of the FIR-radio correlation implies that the synchrotroncooling timescale for cosmic-ray electrons is much shorter than theirescape time from the galactic disk; this in turn implies that the truemagnetic field in starbursts is significantly larger thanBmin. The strongest argument against such large fields isthat one might expect starbursts to have steep radio spectra indicativeof strong synchrotron cooling, which is not observed. However, we showthat ionization and bremsstrahlung losses can flatten the nonthermalspectra of starburst galaxies even in the presence of rapid cooling,providing much better agreement with observed spectra. We furtherdemonstrate that ionization and bremsstrahlung losses are likely to beimportant in shaping the radio spectra of most starbursts at GHzfrequencies, thereby preserving the linearity of the FIR-radiocorrelation. We thus conclude that magnetic fields in starbursts aresignificantly larger than Bmin. We highlight severalobservations that can test this conclusion.

Low-Luminosity Active Galaxies and Their Central Black Holes
Central black hole masses for 117 spiral galaxies representingmorphological stages S0/a through Sc and taken from the largespectroscopic survey of Ho et al. are derived using Ks-banddata from the Two Micron All Sky Survey. Black hole masses are foundusing a calibrated black hole-Ks bulge luminosity relation,while bulge luminosities are measured by means of a two-dimensionalbulge-disk decomposition routine. The black hole masses are correlatedagainst a variety of parameters representing properties of the nucleusand host galaxy. Nuclear properties such as line width (FWHM [N II]), aswell as emission-line ratios (e.g., [O III]/Hβ, [O I]/Hα, [NII]/Hα, and [S II]/Hα), show a very high degree ofcorrelation with black hole mass. The excellent correlation with linewidth supports the view that the emission-line gas is in virialequilibrium with either the black hole or bulge potential. The very goodemission-line ratio correlations may indicate a change in ionizingcontinuum shape with black hole mass in the sense that more massiveblack holes generate harder spectra. Apart from theinclination-corrected rotational velocity, no excellent correlations arefound between black hole mass and host galaxy properties. Significantdifferences are found between the distributions of black hole masses inearly-, mid-, and late-type spiral galaxies (subsamples A, B, and C) inthe sense that early-type galaxies have preferentially larger centralblack holes, consistent with observations that Seyfert galaxies arefound preferentially in early-type systems. The line width distributionsshow a marked difference among subsamples A, B, and C in the sense thatearlier type galaxies have larger line widths. There are also cleardifferences in line ratios between subsamples A+B and C that likely arerelated to the level of ionization in the gas. Finally, aKs-band Simien & de Vaucouleurs diagram shows excellentagreement with the original B-band relation, although there is a largedispersion at a given morphological stage.

The Hα Galaxy Survey . III. Constraints on supernova progenitors from spatial correlations with Hα emission
Aims.We attempt to constrain progenitors of the different types ofsupernovae from their spatial distributions relative to star formationregions in their host galaxies, as traced by Hα + [Nii] lineemission. Methods: .We analyse 63 supernovae which have occurredwithin galaxies from our Hα survey of the local Universe. Threestatistical tests are used, based on pixel statistics, Hα radialgrowth curves, and total galaxy emission-line fluxes. Results:.Many type II supernovae come from regions of low or zero emission lineflux, and more than would be expected if the latter accurately traceshigh-mass star formation. We interpret this excess as a 40% "Runaway"fraction in the progenitor stars. Supernovae of types Ib and Ic doappear to trace star formation activity, with a much higher fractioncoming from the centres of bright star formation regions than is thecase for the type II supernovae. Type Ia supernovae overall show a weakcorrelation with locations of current star formation, but there isevidence that a significant minority, up to about 40%, may be linked tothe young stellar population. The radial distribution of allcore-collapse supernovae (types Ib, Ic and II) closely follows that ofthe line emission and hence star formation in their host galaxies, apartfrom a central deficiency which is less marked for supernovae of typesIb and Ic than for those of type II. Core-collapse supernova ratesoverall are consistent with being proportional to galaxy totalluminosities and star formation rates; however, within this total thetype Ib and Ic supernovae show a moderate bias towards more luminoushost galaxies, and type II supernovae a slight bias towardslower-luminosity hosts.

A radio census of nuclear activity in nearby galaxies
In order to determine the incidence of black hole accretion-drivennuclear activity in nearby galaxies, as manifested by their radioemission, we have carried out a high-resolution Multi-ElementRadio-Linked Interferometer Network (MERLIN) survey of LINERs andcomposite LINER/Hii galaxies from a complete magnitude-limited sample ofbright nearby galaxies (Palomar sample) with unknown arcsecond-scaleradio properties. There are fifteen radio detections, of which three arenew subarcsecond-scale radio core detections, all being candidate AGN.The detected galaxies supplement the already known low-luminosity AGN -low-luminosity Seyferts, LINERs and composite LINER/Hii galaxies - inthe Palomar sample. Combining all radio-detected Seyferts, LINERs andcomposite LINER/Hii galaxies (LTS sources), we obtain an overall radiodetection rate of 54% (22% of all bright nearby galaxies) and weestimate that at least ~50% (~20% of all bright nearby galaxies) aretrue AGN. The radio powers of the LTS galaxies allow the construction ofa local radio luminosity function. By comparing the luminosity functionwith those of selected moderate-redshift AGN, selected from the 2dF/NVSSsurvey, we find that LTS sources naturally extend the RLF of powerfulAGN down to powers of about 10 times that of Sgr A*.

Supermassive Black Holes: Relation to Dark Halos
Estimates of the masses of supermassive black holes (M bh ) in thenuclei of disk galaxies with known rotation curves are compared withestimates of the rotational velocities V m and the“indicative” masses of the galaxies M i . Although there isa correlation between M bh and V m or M i , it is appreciably weakerthan the correlation with the central velocity dispersion. The values ofM bh for early-type galaxies (S0-Sab), which have more massive bulges,are, on average, higher than the values for late-type galaxies with thesame rotational velocities. We conclude that the black-hole masses aredetermined primarily by the properties of the bulge and not therotational velocity or the mass of the galaxy.

A Chandra Snapshot Survey of Infrared-bright LINERs: A Possible Link Between Star Formation, Active Galactic Nucleus Fueling, and Mass Accretion
We present results from a high-resolution X-ray imaging study of nearbyLINERs observed by ACIS on board Chandra. This study complements andextends previous X-ray studies of LINERs, focusing on the underexploredpopulation of nearby dust-enshrouded infrared-bright LINERs. The sampleconsists of 15 IR-bright LINERs (LFIR/LB>3),with distances that range from 11 to 26 Mpc. Combining our sample withprevious Chandra studies, we find that ~51% (28/55) of the LINERsdisplay compact hard X-ray cores. The nuclear 2-10 keV luminosities ofthe galaxies in this expanded sample range from ~2×1038to ~2×1044 ergs s-1. We find that the mostextreme IR-faint LINERs are exclusively active galactic nuclei (AGNs).The fraction of LINERs containing AGNs appears to decrease with IRbrightness and increase again at the highest values ofLFIR/LB. We find that of the 24 LINERs showingcompact nuclear hard X-ray cores in the expanded sample that wereobserved at Hα wavelengths, only eight actually show evidence of abroad line. Similarly, of the 14 LINERs showing compact nuclear hardX-ray cores with corresponding radio observations, only eight display acompact flat spectrum radio core. These findings emphasize the need forhigh-resolution X-ray imaging observations in the study of IR-brightLINERs. Finally, we find an intriguing trend in the Eddington ratioversus LFIR and LFIR/LB for theAGN-LINERs in the expanded sample that extends over 7 orders ofmagnitude in L/LEdd. This correlation may imply a linkbetween black hole growth, as measured by the Eddington ratio, and thestar formation rate, as measured by the far-IR luminosity andIR-brightness ratio. If the far-IR luminosity is an indicator of themolecular gas content in our sample of LINERs, our results may furtherindicate that the mass accretion rate scales with the host galaxy's fuelsupply. We discuss the potential implications of our results in theframework of black hole growth and AGN fueling in low-luminosity AGNs.

The Distribution of Bar and Spiral Arm Strengths in Disk Galaxies
The distribution of bar strengths in disk galaxies is a fundamentalproperty of the galaxy population that has only begun to be explored. Wehave applied the bar-spiral separation method of Buta and coworkers toderive the distribution of maximum relative gravitational bar torques,Qb, for 147 spiral galaxies in the statistically well-definedOhio State University Bright Galaxy Survey (OSUBGS) sample. Our goal isto examine the properties of bars as independently as possible of theirassociated spirals. We find that the distribution of bar strengthdeclines smoothly with increasing Qb, with more than 40% ofthe sample having Qb<=0.1. In the context of recurrent barformation, this suggests that strongly barred states are relativelyshort-lived compared to weakly barred or nonbarred states. We do notfind compelling evidence for a bimodal distribution of bar strengths.Instead, the distribution is fairly smooth in the range0.0<=Qb<0.8. Our analysis also provides a first look atspiral strengths Qs in the OSUBGS sample, based on the sametorque indicator. We are able to verify a possible weak correlationbetween Qs and Qb, in the sense that galaxies withthe strongest bars tend to also have strong spirals.

Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey - I
Bar-induced perturbation strengths are calculated for a well-definedmagnitude-limited sample of 180 spiral galaxies, based on the Ohio StateUniversity Bright Galaxy Survey. We use a gravitational torque method,the ratio of the maximal tangential force to the mean axisymmetricradial force, as a quantitative measure of the bar strength. Thegravitational potential is inferred from an H-band light distribution byassuming that the M/L ratio is constant throughout the disc. Galaxiesare deprojected using orientation parameters based on B-band images. Inorder to eliminate artificial stretching of the bulge, two-dimensionalbar-bulge-disc decomposition has been used to derive a reliable bulgemodel. This bulge model is subtracted from an image, the disc isdeprojected assuming it is thin, and then the bulge is added back byassuming that its mass distribution is spherically symmetric. We findthat removing the artificial bulge stretch is important especially forgalaxies having bars inside large bulges. We also find that the massesof the bulges can be significantly overestimated if bars are not takeninto account in the decomposition.Bars are identified using Fourier methods by requiring that the phasesof the main modes (m= 2, m= 4) are maintained nearly constant in the barregion. With such methods, bars are found in 65 per cent of the galaxiesin our sample, most of them being classified as SB-type systems in thenear-infrared by Eskridge and co-workers. We also suggest that as muchas ~70 per cent of the galaxies classified as SAB-types in thenear-infrared might actually be non-barred systems, many of them havingcentral ovals. It is also possible that a small fraction of the SAB-typegalaxies have weak non-classical bars with spiral-like morphologies.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations
We present a study of the stellar populations of low-luminosity activegalactic nuclei (LLAGNs). Our goal is to search for spectroscopicsignatures of young and intermediate-age stars and to investigate theirrelationship with the ionization mechanism in LLAGNs. The method used isbased on the stellar population synthesis of the optical continuum ofthe innermost (20-100 pc) regions in these galaxies. For this purpose,we have collected high spatial resolution optical (2900-5700 Å)STIS spectra of 28 nearby LLAGNs that are available in the Hubble SpaceTelescope archive. The analysis of these data is compared with a similaranalysis also presented here for 51 ground-based spectra of LLAGNs. Ourmain findings are as follows: (1) No features due to Wolf-Rayet starswere convincingly detected in the STIS spectra. (2) Young starscontribute very little to the optical continuum in the ground-basedaperture. However, the fraction of light provided by these stars ishigher than 10% in most of the weak-[O I] ([OI]/Hα<=0.25) LLAGNSTIS spectra. (3) Intermediate-age stars contribute significantly to theoptical continuum of these nuclei. This population is more frequent inobjects with weak than with strong [O I]. Weak-[O I] LLAGNs that haveyoung stars stand out for their intermediate-age population. (4) Most ofthe strong-[O I] LLAGNs have predominantly old stellar population. A fewof these objects also show a featureless continuum that contributessignificantly to the optical continuum. These results suggest that youngand intermediate-age stars do not play a significant role in theionization of LLAGNs with strong [O I]. However, the ionization inweak-[O I] LLAGNs with young and/or intermediate-age populations couldbe due to stellar processes. A comparison of the properties of theseobjects with Seyfert 2 galaxies that harbor a nuclear starburst suggeststhat weak-[O I] LLAGNs are the lower luminosity counterparts of theSeyfert 2 composite nuclei.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555. Based on observations made with the Nordic OpticalTelescope (NOT), operated on the island of La Palma jointly by Denmark,Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio delRoque de los Muchachos of the Instituto de Astrofísica deCanarias.

A New Nonparametric Approach to Galaxy Morphological Classification
We present two new nonparametric methods for quantifying galaxymorphology: the relative distribution of the galaxy pixel flux values(the Gini coefficient or G) and the second-order moment of the brightest20% of the galaxy's flux (M20). We test the robustness of Gand M20 to decreasing signal-to-noise ratio (S/N) and spatialresolution and find that both measures are reliable to within 10% forimages with average S/N per pixel greater than 2 and resolutions betterthan 1000 and 500 pc, respectively. We have measured G andM20, as well as concentration (C), asymmetry (A), andclumpiness (S) in the rest-frame near-ultraviolet/optical wavelengthsfor 148 bright local ``normal'' Hubble-type galaxies (E-Sd) galaxies, 22dwarf irregulars, and 73 0.05

The Distribution of Maximum Relative Gravitational Torques in Disk Galaxies
The maximum value of the ratio of the tangential force to the meanbackground radial force is a useful quantitative measure of the strengthof nonaxisymmetric perturbations in disk galaxies. Here we consider thedistribution of this ratio, called Qg, for a statisticallywell-defined sample of 180 spiral galaxies from the Ohio StateUniversity Bright Galaxy Survey and the Two Micron All Sky Survey. Theratio Qg can be interpreted as the maximum gravitationaltorque per unit mass per unit square of the circular speed and isderived from gravitational potentials inferred from near-infrared imagesunder the assumptions of a constant mass-to-light ratio and anexponential vertical density law. In order to derive the most reliablemaximum relative torques, orientation parameters based on blue-lightisophotes are used to deproject the galaxies, and the more sphericalshapes of bulges are taken into account using two-dimensionaldecompositions that allow for analytical fits to bulges, disks, andbars. Also, vertical scale heights hz are derived by scalingthe radial scale lengths hR from the two-dimensionaldecompositions, allowing for the type dependence ofhR/hz indicated by optical and near-infraredstudies of edge-on spiral galaxies. The impact of dark matter isassessed using a ``universal rotation curve'' parameterization and isfound to be relatively insignificant for our sample. In agreement with aprevious study by Block et al., the distribution of maximum relativegravitational torques is asymmetric toward large values and shows adeficiency of low-Qg galaxies. However, because of the aboverefinements, our distribution shows more low-Qg galaxies thanthat of Block et al. We also find a significant type dependence inmaximum relative gravitational torques, in the sense that Qgis lower on average in early-type spirals than in late-type spirals. Theeffect persists even when the sample is separated into bar-dominated andspiral-dominated subsamples and also when near-infrared types are used,as opposed to optical types.

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

Deprojecting spiral galaxies using Fourier analysis. Application to the Ohio sample
We use two new methods developed recently (Barberàet al.\cite{bar03}, A&A, 415, 849), as well as information obtained fromthe literature, to calculate the orientation parameters of the spiralgalaxies in the Ohio State University Bright Galaxy Survey. We comparethe results of these methods with data from the literature, and find ingeneral good agreement. We provide a homogeneous set of mean orientationparameters which can be used to approximately deproject the disks of thegalaxies and facilitate a number of statistical studies of galaxyproperties.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/421/595

Properties of isolated disk galaxies
We present a new sample of northern isolated galaxies, which are definedby the physical criterion that they were not affected by other galaxiesin their evolution during the last few Gyr. To find them we used thelogarithmic ratio, f, between inner and tidal forces acting upon thecandidate galaxy by a possible perturber. The analysis of thedistribution of the f-values for the galaxies in the Coma cluster leadus to adopt the criterion f ≤ -4.5 for isolated galaxies. Thecandidates were chosen from the CfA catalog of galaxies within thevolume defined by cz ≤5000 km s-1, galactic latitudehigher than 40o and declination ≥-2.5o. Theselection of the sample, based on redshift values (when available),magnitudes and sizes of the candidate galaxies and possible perturberspresent in the same field is discussed. The final list of selectedisolated galaxies includes 203 objects from the initial 1706. The listcontains only truly isolated galaxies in the sense defined, but it is byno means complete, since all the galaxies with possible companions underthe f-criterion but with unknown redshift were discarded. We alsoselected a sample of perturbed galaxies comprised of all the diskgalaxies from the initial list with companions (with known redshift)satisfying f ≥ -2 and \Delta(cz) ≤500 km s-1; a totalof 130 objects. The statistical comparison of both samples showssignificant differences in morphology, sizes, masses, luminosities andcolor indices. Confirming previous results, we found that late spiral,Sc-type galaxies are, in particular, more frequent among isolatedgalaxies, whereas Lenticular galaxies are more abundant among perturbedgalaxies. Isolated systems appear to be smaller, less luminous and bluerthan interacting objects. We also found that bars are twice as frequentamong perturbed galaxies compared to isolated galaxies, in particularfor early Spirals and Lenticulars. The perturbed galaxies have higherLFIR/LB and Mmol/LB ratios,but the atomic gas content is similar for the two samples. The analysisof the luminosity-size and mass-luminosity relations shows similartrends for both families, the main difference being the almost totalabsence of big, bright and massive galaxies among the family of isolatedsystems, together with the almost total absence of small, faint and lowmass galaxies among the perturbed systems. All these aspects indicatethat the evolution induced by interactions with neighbors would proceedfrom late, small, faint and low mass Spirals to earlier, bigger, moreluminous and more massive spiral and lenticular galaxies, producing atthe same time a larger fraction of barred galaxies but preserving thesame relations between global parameters. The properties we found forour sample of isolated galaxies appear similar to those of high redshiftgalaxies, suggesting that the present-day isolated galaxies could bequietly evolved, unused building blocks surviving in low densityenvironments.Tables \ref{t1} and \ref{t2} are only available in electronic form athttp://www.edpsciences.org

Deprojecting spiral galaxies using Fourier analysis. Application to the Frei sample
We present two methods that can be used to deproject spirals, based onFourier analysis of their images, and discuss their potential andrestrictions. Our methods perform particularly well for galaxies moreinclined than 50° or for non-barred galaxies moreinclined than 35°. They are fast and straightforward touse, and thus ideal for large samples of galaxies. Moreover, they arevery robust for low resolutions and thus are appropriate for samples ofcosmological interest. The relevant software is available from us uponrequest. We use these methods to determine the values of the positionand inclination angles for a sample of 79 spiral galaxies contained inthe Frei et al. (\cite{frei96}) sample. We compare our results with thevalues found in the literature, based on other methods. We findstatistically very good agreementTable 7 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/415/849

The Hα galaxy survey. I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies
We discuss the selection and observations of a large sample of nearbygalaxies, which we are using to quantify the star formation activity inthe local Universe. The sample consists of 334 galaxies across allHubble types from S0/a to Im and with recession velocities of between 0and 3000 km s-1. The basic data for each galaxy are narrowband H\alpha +[NII] and R-band imaging, from which we derive starformation rates, H\alpha +[NII] equivalent widths and surfacebrightnesses, and R-band total magnitudes. A strong correlation is foundbetween total star formation rate and Hubble type, with the strongeststar formation in isolated galaxies occurring in Sc and Sbc types. Moresurprisingly, no significant trend is found between H\alpha +[NII]equivalent width and galaxy R-band luminosity. More detailed analyses ofthe data set presented here will be described in subsequent papers.Based on observations made with the Jacobus Kapteyn Telescope operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.The full version of Table \ref{tab3} is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/23 Reduced image datafor this survey can be downloaded fromhttp://www.astro.livjm.ac.uk/HaGS/

A Fundamental Plane of black hole activity
We examine the disc-jet connection in stellar mass and supermassiveblack holes by investigating the properties of their compact emission inthe X-ray and radio bands. We compile a sample of ~100 active galacticnuclei with measured masses, 5-GHz core emission, and 2-10 keVluminosities, together with eight galactic black holes with a total of~50 simultaneous observations in the radio and X-ray bands. Using thissample, we study the correlations between the radio (LR) andthe X-ray (LX) luminosity and the black hole mass (M). Wefind that the radio luminosity is correlated with bothM andLX, at a highly significant level. In particular, we showthat the sources define a `Fundamental Plane' in the three-dimensional(logLR, logLX, logM) space, given bylogLR= (0.60+0.11-0.11)logLX+ (0.78+0.11-0.09) logM+7.33+4.05-4.07, with a substantial scatter ofσR= 0.88. We compare our results to the theoreticalrelations between radio flux, black hole mass, and accretion ratederived by Heinz & Sunyaev. Such relations depend only on theassumed accretion model and on the observed radio spectral index.Therefore, we are able to show that the X-ray emission from black holesaccreting at less than a few per cent of the Eddington rate is unlikelyto be produced by radiatively efficient accretion, and is marginallyconsistent with optically thin synchrotron emission from the jet. On theother hand, models for radiatively inefficient accretion flows seem toagree well with the data.

The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories
A major problem in extragalactic astronomy is the inability todistinguish in a robust, physical, and model-independent way how galaxypopulations are physically related to each other and to their formationhistories. A similar, but distinct, and also long-standing question iswhether the structural appearances of galaxies, as seen through theirstellar light distributions, contain enough physical information tooffer this classification. We argue through the use of 240 images ofnearby galaxies that three model-independent parameters measured on asingle galaxy image reveal its major ongoing and past formation modesand can be used as a robust classification system. These parametersquantitatively measure: the concentration (C), asymmetry (A), andclumpiness (S) of a galaxy's stellar light distribution. When combinedinto a three-dimensional ``CAS'' volume all major classes of galaxies invarious phases of evolution are cleanly distinguished. We argue thatthese three parameters correlate with important modes of galaxyevolution: star formation and major merging activity. This is arguedthrough the strong correlation of Hα equivalent width andbroadband colors with the clumpiness parameter S, the uniquely largeasymmetries of 66 galaxies undergoing mergers, and the correlation ofbulge to total light ratios, and stellar masses, with the concentrationindex. As an obvious goal is to use this system at high redshifts totrace evolution, we demonstrate that these parameters can be measured,within a reasonable and quantifiable uncertainty with available data outto z~3 using the Hubble Space Telescope GOODS ACS and Hubble Deep Fieldimages.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

Galaxy classification using fractal signature
Fractal geometry is becoming increasingly important in the study ofimage characteristics. For recognition of regions and objects in naturalscenes, there is always a need for features that are invariant and theyprovide a good set of descriptive values for the region. There are manyfractal features that can be generated from an image. In this paper,fractal signatures of nearby galaxies are studied with the aim ofclassifying them. The fractal signature over a range of scales proved tobe an efficient feature set with good discriminating power. Classifierswere designed using nearest neighbour method and neural networktechnique. Using the nearest distance approach, classification rate wasfound to be 92%. By the neural network method it has been found toincrease to 95%.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr ( or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Bar strengths in spiral galaxies estimated from 2MASS images
Non-axisymmetric forces are presented for a sample of 107 spiralgalaxies, of which 31 are barred (SB) and 53 show nuclear activity. As adata base we use JHK images from the 2 Micron All-sky Survey, and thenon-axisymmetries are characterized by the ratio of the tangential forceto the mean axisymmetric radial force field, following Buta & Block.Bar strengths have an important role in many extragalactic problems andtherefore it is important to verify that the different numerical methodsapplied for calculating the forces give mutually consistent results. Weapply both direct Cartesian integration and a polar grid integrationutilizing a limited number of azimuthal Fourier components of density.We find that the bar strength is independent of the method used toevaluate the gravitational potential. However, because of thedistance-dependent smoothing by Fourier decomposition, the polar methodis more suitable for weak and noisy images. The largest source ofuncertainty in the derived bar strength appears to be the uncertainty inthe vertical scaleheight, which is difficult to measure directly formost galaxies. On the other hand, the derived bar strength is ratherinsensitive to the possible gradient in the vertical scaleheight of thedisc or to the exact model of the vertical density distribution,provided that the same effective vertical dispersion is assumed in allmodels. In comparison with the pioneering study by Buta & Block, thebar strength estimate is improved here by taking into account thedependence of the vertical scaleheight on the Hubble type: we find thatfor thin discs bar strengths are stronger than for thick discs by anamount that may correspond to as much as one bar strength class. Weconfirm the previous result by Buta and co-workers showing that thedispersion in bar strength is large among all the de Vaucouleurs opticalbar classes. In the near-infrared 40 per cent of the galaxies in oursample have bars (showing constant phases in the m= 2 Fourier amplitudesin the bar region), while in the optical band one-third of these barsare obscured by dust. Significant non-axisymmetric forces can also beinduced by the spiral arms, generally in the outer parts of the galacticdiscs, which may have important implications on galaxy evolution.Possible biases of the selected sample are also studied: we find thatthe number of bars identified drops rapidly when the inclination of thegalactic disc is larger than 50°. A similar bias is found in theThird Reference Catalogue of Bright Galaxies, which might be of interestwhen comparing bar frequencies at high and low redshifts.

The H I Line Width/Linear Diameter Relationship as an Independent Test of the Hubble Constant
The relationship between corrected H I line widths and linear diameters(LW/LD) for spiral galaxies is used as an independent check on the valueof the Hubble constant. After calibrating the Tully-Fisher (TF) relationin both the B and I bands, the B-band relation is used for galaxies ofmorphological/luminosity types Sc I, Sc I.2, Sc I.3, Sab, Sb, Sb I-II,and Sb II to derive the LW/LD relation. We find that for this sample thescatter in the LW/LD is smallest with a Hubble constant of 90-95 kms-1 Mpc-1. Lower values of the Hubble constantproduce a separation in the LW/LD relation that is a function ofmorphological type. Since a Hubble constant of 90-95 is significantlylarger than the final Key Project value of 72 km s-1Mpc-1, a comparison of TF, surface brightness fluctuation(SBF), and fundamental plane (FP) is made. This comparison indicatesthat the Key Project TF distances to 21 clusters may be too large. For asample of 11 clusters, the Key Project TF distances provide anunweighted mean Hubble constant of 77 km s-1Mpc-1, while a combination of the FP, SBF, and our TFdistances for the same 11 clusters gives H0=91 kms-1 Mpc-1. A more subtle result in our data is amorphological dichotomy in the Hubble constant. The data suggest that ScI galaxies follow a Hubble constant of 90-95 while Sb galaxies follow aHubble constant closer to 75 km s-1 Mpc-1.Possible explanations for this result are considered, but it is shownthat this Sb/Sc I Hubble flow discrepancy is also present in the VirgoCluster and is consistent with previous investigations that indicatethat some galaxies carry a component of age-related intrinsic redshift.

A Study of the Direct Fitting Method for Measurement of Galaxy Velocity Dispersions
We have measured the central stellar velocity dispersions of 33 nearbyspiral and elliptical galaxies, using a straightforward template-fittingalgorithm operating in the pixel domain. The spectra, obtained with theDouble Spectrograph at Palomar Observatory, cover both the Ca tripletand the Mg I b region, and we present a comparison of the velocitydispersion measurements from these two spectral regions. Model fits tothe Ca triplet region generally yield good results, with littlesensitivity to the choice of template star. In contrast, the Mg I bregion is more sensitive to template mismatch and to details of thefitting procedure, such as the order of a polynomial used to match thecontinuum shape of the template to the object. As a consequence of thecorrelation of the [Mg/Fe] ratio with velocity dispersion, it isdifficult to obtain a satisfactory model fit to the Mg I b lines and thesurrounding Fe blends simultaneously, particularly for giant ellipticalgalaxies with large velocity dispersions. We demonstrate that if themetallicities of the galaxy and template star are not well matched, thendirect template-fitting results are improved if the Mg I b linesthemselves are excluded from the fit and the velocity dispersion isdetermined from the surrounding weaker lines.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

The Visibility of Galactic Bars and Spiral Structure at High Redshifts
We investigate the visibility of galactic bars and spiral structure inthe distant universe by artificially redshifting 101 B-band CCD imagesof local spiral galaxies from the Ohio State University Bright SpiralGalaxy Survey. These local galaxy images represent a much fairerstatistical baseline than the galaxy atlas images presented by Frei etal. in 1995, the most commonly used calibration sample for morphologicalwork at high redshifts. Our artificially redshifted images correspond toHubble Space Telescope I814-band observations of the localgalaxy sample seen at z=0.7, with integration times matching those ofboth the very deep northern Hubble Deep Field (HDF) data and the muchshallower HDF flanking field observations. The expected visibility ofgalactic bars is probed in two ways: (1) using traditional visualclassification and (2) by charting the changing shape of the galaxydistribution in ``Hubble space,'' a quantitative two-parameterdescription of galactic structure that maps closely onto Hubble'soriginal tuning fork. Both analyses suggest that over two-thirds ofstrongly barred luminous local spirals (i.e., objects classified as SBin the Third Reference Catalogue) would still be classified as stronglybarred at z=0.7 in the HDF data. Under the same conditions, most weaklybarred spirals (classified SAB in the Third Reference Catalogue) wouldbe classified as regular spirals. The corresponding visibility of spiralstructure is assessed visually, by comparing luminosity classificationsfor the artificially redshifted sample with the corresponding luminosityclassifications from the Revised Shapley-Ames Catalog. We find that forexposure times similar to that of the HDF, spiral structure should bedetectable in most luminous (MB~M*) low-inclination spiralgalaxies at z=0.7 in which it is present. However, obvious spiralstructure is only detectable in ~30% of comparable galaxies in the HDFflanking field data using the Wide Field Planetary Camera 2. Our studyof artificially redshifted local galaxy images suggests that, whenviewed at similar resolution, noise level, and redshift-correctedwavelength, barred spirals are less common at z~0.7 than they are atz=0.0, although more data are needed to definitively rule out thepossibility that cosmic variance is responsible for much of this effect.

Local velocity field from sosie galaxies. I. The Peebles' model
Pratton et al. (1997) showed that the velocity field around clusterscould generate an apparent distortion that appears as tangentialstructures or radial filaments. In the present paper we determine theparameters of the Peebles' model (1976) describing infall of galaxiesonto clusters with the aim of testing quantitatively the amplitude ofthis distortion. The distances are determined from the concept of sosiegalaxies (Paturel 1984) using 21 calibrators for which the distanceswere recently calculated from two independent Cepheid calibrations. Weuse both B and I-band magnitudes. The Spaenhauer diagram method is usedto correct for the Malmquist bias. We give the equations for theconstruction of this diagram. We analyze the apparent Hubble constant indifferent regions around Virgo and obtain simultaneously the Local Groupinfall and the unperturbed Hubble constant. We found:[VLG-infall = 208 ± 9 km s-1] [\log H =1.82 ± 0.04 (H ≈ 66 ± 6 km s-1Mpc-1).] The front side and backside infalls can be seenaround Virgo and Fornax. In the direction of Virgo the comparison ismade with the Peebles' model. We obtain: [vinfall} =CVirgo/r0.9 ± 0.2] withCVirgo=2800 for Virgo and CFornax=1350 for Fornax,with the adopted units (km s-1 and Mpc). We obtain thefollowing mean distance moduli: [μVirgo=31.3 ± 0.2(r=18 Mpc )] [μFornax=31.7 ± 0.3 (r=22 Mpc). ] Allthese quantities form an accurate and coherent system. Full Table 2 isonly available in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/57

Radio sources in low-luminosity active galactic nuclei. III. ``AGNs'' in a distance-limited sample of ``LLAGNs''
This paper presents the results of a high resolution radio imagingsurvey of all known (96) low-luminosity active galactic nuclei (LLAGNs)at D <= 19 Mpc. We first report new 2 cm (150 mas resolution usingthe VLA) and 6 cm (2 mas resolution using the VLBA) radio observationsof the previously unobserved nuclei in our samples and then presentresults on the complete survey. We find that almost half of all LINERsand low-luminosity Seyferts have flat-spectrum radio cores when observedat 150 mas resolution. Higher (2 mas) resolution observations of aflux-limited subsample have provided a 100% (16 of 16) detection rate ofpc-scale radio cores, with implied brightness temperatures gtrsim108 K. The five LLAGNs with the highest core radio fluxesalso have pc-scale ``jets''. Compact radio cores are almost exclusivelyfound in massive ellipticals and in type 1 nuclei (i.e. nuclei withbroad Hα emission). Only a few ``transition'' nuclei have compactradio cores; those detected in the radio have optical emission-linediagnostic ratios close to those of LINERs/Seyferts. This indicates thatsome transition nuclei are truly composite Seyfert/LINER+H II regionnuclei, with the radio core power depending on the strength of theformer component. The core radio power is correlated with the nuclearoptical ``broad'' Hα luminosity, the nuclear optical ``narrow''emission-line luminosity and width, and with the galaxy luminosity. Inthese correlations LLAGNs fall close to the low-luminosityextrapolations of more powerful AGNs. The scalings suggest that many ofthe radio-non-detected LLAGNs are simply lower power versions of theradio-detected LLAGNs. The ratio of core radio power to nuclear opticalemission-line luminosity increases with increasing bulge luminosity forall LLAGNs. Also, there is evidence that the luminosity of the diskcomponent of the galaxy is correlated with the nuclear emission-lineluminosity (but not the core radio power). About half of all LLAGNs withmultiple epoch data show significant inter-year radio variability.Investigation of a sample of ~ 150 nearby bright galaxies, most of themLLAGNs, shows that the nuclear (<=150 mas size) radio power isstrongly correlated with both the black hole mass and the galaxy bulgeluminosity; linear regression fits to all ~ 150 galaxies give: logP2 cm = 1.31(+/-0.16) log {MMDO} + 8.77 and logP2 cm = 1.89(+/-0.21) log LB(bulge) -0.17. Lowaccretion rates (<=10-2-10-3 of the Eddingtonrate) are implied in both advection- and jet-type models. In brief, allevidence points towards the presence of accreting massive black holes ina large fraction, perhaps all, of LLAGNs, with the nuclear radioemission originating in either the accretion inflow onto the massiveblack hole or from jets launched by this black hole-accretion disksystem.

Detection of Nuclear X-Ray Sources in Nearby Galaxies with Chandra
We report preliminary results from an arcsecond-resolution X-ray surveyof nearby galaxies using the Advanced CCD Imaging Spectrometer on boardthe Chandra X-Ray Observatory. The total sample consists of 41low-luminosity active galactic nuclei (AGNs), including Seyfertgalaxies, LINERs, and LINER/H II transition objects. In the initialsubsample of 24 objects observed thus far, we detect in ~62% of theobjects a compact, pointlike source astrometrically coincident witheither the optical or radio position of the nucleus. The high detectionrate strongly suggests that the majority of the objects do containweakly active, AGN-like cores, presumably powered by central massiveblack holes. The 2-10 keV luminosities of the nuclear sources range fromless than 1038 to 1041 ergs s-1, with amedian value of 2×1038 ergs s-1. Ourdetection limit corresponds to LX(2-10keV)~8×1037 ergs s-1 for the typical sampledistance of 12 Mpc; this limit is 2 orders of magnitude fainter than theweakest sources of this kind previously studied using ASCA or BeppoSAX.The new data extend toward lower luminosities the known linearcorrelation between hard X-ray and Hα luminosity for broad-lineAGNs. Many narrow-line objects do contain X-ray cores, consistent witheither weak AGNs or X-ray binary systems, but they have X-rayluminosities a factor of 10 below the LX-LHαrelation of the broad-line sources. Their distributions of photonenergies show no indication of exceptionally high absorption. Theoptical line emission in these nuclei is likely powered, at least inpart, by stellar processes.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Constellation:Ursa Major
Right ascension:11h26m08.20s
Aparent dimensions:5.888′ × 3.236′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 3675

→ Request more catalogs and designations from VizieR