Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

IC 2132


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Kinematics of the local universe . XII. 21-cm line measurements of 586 galaxies with the new Nançay receiver
This paper presents 586 new 21-cm neutral hydrogen line measurementscarried out with the FORT receiver of the meridian transit Nançayradiotelescope in the period July 2000-March 2003. This observationalprogramme is part of a larger project aiming at collecting an exhaustiveand magnitude-complete HI extragalactic catalogue for Tully-Fisherapplications. It is associated with the building of the MIGALEspectroscopic archive and database.Tables 2, 3 and HI-profiles and corresponding comments are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/373, or directly atour web site http://klun.obs-nancay.fr

HYPERLEDA. II. The homogenized HI data
After a compilation of HI data from 611 references and new observationsmade in Nançay, we produce a catalog of homogenized HI data for16781 galaxies. The homogenization is made using the EPIDEMIC methodfrom which all data are progressively converted into the adoptedstandard. The result is a catalog giving: 1) the logarithm of twice themaximum rotation velocity, log 2V_Msin i, converted to thesystem of Mathewson et al. (\cite{Mathewson1996}). This quantity isgiven without correction for inclination; 2) the HI magnitude,m21, (area of the 21-cm line width expressed in magnitude)converted to the flux system of Theureau et al. (\cite{Theureau1998});3) the HI velocity, V_HI, expressed with the optical definition (i.e.,using wavelengths instead frequencies). The typical uncertainties are:0.04 for log 2V_Msin i, 0.25 mag for m21 and 9 kms-1 for V_HI.Full Tables \ref{epidemicw}, \ref{epidemicw2}, \ref{epidemicf},\ref{epidemicf2} and Fig. \ref{profiles} are available in electronicform at http://www.edpsciences.org. Full Tables \ref{references},\ref{cataf}, \ref{newdata} and \ref{notes} are available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/57

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

The QDOT all-sky IRAS galaxy redshift survey
We describe the construction of the QDOT survey, which is publiclyavailable from an anonymous FTP account. The catalogue consists ofinfrared properties and redshifts of an all-sky sample of 2387 IRASgalaxies brighter than the IRAS PSC 60-μm completeness limit(S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10deg, after removing a small number of Galactic sources, the redshiftcompleteness is better than 98per cent (2086/2127). New redshifts for1401 IRAS sources were obtained to complete the catalogue; themeasurement and reduction of these are described, and the new redshiftstabulated here. We also tabulate all sources at |b|>10 deg with noredshift so far, and sources with conflicting alternative redshiftseither from our own work, or from published velocities. A list of 95ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is alsoprovided. Of these, ~20per cent are AGN of some kind; the broad-lineobjects typically show strong Feii emission. Since the publication ofthe first QDOT papers, there have been several hundred velocity changes:some velocities are new, some QDOT velocities have been replaced by moreaccurate values, and some errors have been corrected. We also present anew analysis of the accuracy and linearity of IRAS 60-μm fluxes. Wefind that the flux uncertainties are well described by a combination of0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty.This is not enough to cause the large Malmquist-type errors in the rateof evolution postulated by Fisher et al. We do, however, find marginalevidence for non-linearity in the PSC 60-μm flux scale, in the sensethat faint sources may have fluxes overestimated by about 5per centcompared with bright sources. We update some of the previous scientificanalyses to assess the changes. The main new results are as follows. (1)The luminosity function is very well determined overall but is uncertainby a factor of several at the very highest luminosities(L_60μm>5x10^12L_solar), as this is where the remainingunidentified objects are almost certainly concentrated. (2) Thebest-fitting rate of evolution is somewhat lower than our previousestimate; expressed as pure density evolution with density varying as(1+z)^p, we find p=5.6+/-2.3. Making a rough correction for the possible(but very uncertain) non-linearity of fluxes, we find p=4.5+/-2.3. (3)The dipole amplitude decreases a little, and the implied value of thedensity parameter, assuming that IRAS galaxies trace the mass, isΩ=0.9(+0.45, -0.25). (4) Finally, the estimate of density varianceon large scales changes negligibly, still indicating a significantdiscrepancy from the predictions of simple cold dark matter cosmogonies.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Hase
Right ascension:05h32m28.60s
Declination:-13°55'37.0"
Aparent dimensions:1.862′ × 0.646′

Catalogs and designations:
Proper Names   (Edit)
ICIC 2132
HYPERLEDA-IPGC 17415

→ Request more catalogs and designations from VizieR