Home     Per cominciare     Sopravvivere Nell'Universo    
Inhabited Sky
    News@Sky     Astro Foto     La collezione     Forum     Blog New!     FAQ     Stampa     Login  

NGC 6890


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

The K-band properties of Seyfert 2 galaxies
Aims. It is well known that the [O iii]λ5007 emission line andhard X-ray (2-10 keV) luminosities are good indicators of AGN activitiesand that the near and mid-infrared emission of AGN originates fromre-radiation of dusty clouds heated by the UV/optical radiation from theaccretion disk. In this paper we present a study of the near-infraredK-band (2.2 μm) properties for a sample of 65 Seyfert 2 galaxies. Methods: .By using the AGN/Bulge/Disk decomposition technique, weanalyzed the 2MASS K_S-band images for Seyfert 2 galaxies in order toderive the K_S-band magnitudes for the central engine, bulge, and diskcomponents. Results: .We find that the K_S-band magnitudes of thecentral AGN component in Seyfert 2 galaxies are tightly correlated withthe [O iii]λ5007 and the hard X-ray luminosities, which suggeststhat the AGN K-band emission is also an excellent indicator of thenuclear activities at least for Seyfert 2 galaxies. We also confirm thegood relation between the central black hole masses and bulge's K-bandmagnitudes for Seyfert 2s.

Dust Morphology of Hidden Broad-Line Region and Non-Hidden Broad-Line Region Seyfert 2 Galaxies
We investigate the nuclear dust properties of hidden broad-line region(HBLR) and non-HBLR Seyfert 2 galaxies. Optical images obtained from theHubble Space Telescope for a selected sample of HBLR and non-HBLRSeyfert 2 galaxies are fitted with the Galfit package to probe the innerstructures of these galaxies within the central 1 kpc regions. Most ofthe galaxies show complicated dust features in these regions. However,the dust morphology shows no significant difference between the HBLR andnon-HBLR Seyfert 2 galaxies. Dust masses inside the 1 kpc nuclearregions (M1kpc) are estimated from the obscuration levels inthe central regions of these galaxies. We compare our results with otherobserved properties, including [O III], far-infrared, and radioemission. We find that the HBLR and non-HBLR Seyfert 2 galaxies showdifferent near-infrared colors and M1kpc-FIR correlations,indicating that these two classes of Seyfert 2 galaxies are dominated bydifferent emission mechanisms. We suggest that they are intrinsicallydifferent and cannot be explained by the standard unification model.

The star formation history of Seyfert 2 nuclei
We present a study of the stellar populations in the central ~200 pc ofa large and homogeneous sample comprising 79 nearby galaxies, most ofwhich are Seyfert 2s. The star formation history of these nuclei isreconstructed by means of state-of-the-art population synthesismodelling of their spectra in the 3500-5200 Åinterval. Aquasar-like featureless continuum (FC) is added to the models to accountfor possible scattered light from a hidden active galactic nucleus(AGN).We find the following. (1) The star formation history of Seyfert 2nuclei is remarkably heterogeneous: young starbursts, intermediate-ageand old stellar populations all appear in significant and widely varyingproportions. (2) A significant fraction of the nuclei show a strong FCcomponent, but this FC is not always an indication of a hidden AGN: itcan also betray the presence of a young, dusty starburst. (3) We detectweak broad Hβ emission in several Seyfert 2s after cleaning theobserved spectrum by subtracting the synthesis model. These are mostlikely the weak scattered lines from the hidden broad-line regionenvisaged in the unified model, given that in most of these casesindependent spectropolarimetry data find a hidden Seyfert 1. (4) The FCstrengths obtained by the spectral decomposition are substantiallylarger for the Seyfert 2s which present evidence of broad lines,implying that the scattered non-stellar continuum is also detected. (5)There is no correlation between the star formation in the nucleus andeither the central or overall morphology of the parent galaxies.

Stellar populations and dust extinction in non-active and Seyfert spiral galaxies
Metallicity and age gradients of the stellar populations and dustextinction are studied for a sample of 32 non-active, seven type 1Seyfert (S1) and 17 type 2 Seyfert (S2) spiral galaxies. The samplegalaxies cover the whole range from face-on to edge-on view, and thevariation of the optical and near-infrared colour gradients in the discas a function of the inclination angle is investigated in order toseparate colour changes caused by population gradients from those due todust effects.The measurements show that the observed colour gradients in the discs ofthe non-active galaxies are significantly larger than those found forthe S1 and S2 galaxies. In the near-infrared wavelengths, however, thesedifferences disappear, and the colour gradients are the same for allthree galaxy types. No systematic differences are found between thecolour gradients of the discs of the S1 galaxies and those of the S2galaxies.The data are compared to model images of dusty galaxies with a varietyof age and metallicity gradients in the disc. The radial variations ofthe optical and near-infrared colours of the model galaxies arecalculated from the radial changes of the ages and the metallicities ofthe stars, using broad-band colours of a single stellar population. Thestellar content at a given position in the disc is determined by theaverage age, the metallicity and the star formation history.For the non-active galaxies, the observed colour gradients arerepresented best by a model with a metallicity gradient, with the innerregions of the stellar disc being more metal-rich than the outerregions. However, the presence of an age gradient, with the innerregions of the stellar disc being older than the outer regions, cannotbe ruled out. For the S1 and S2 galaxies, the comparison between dataand models indicates that the age and metallicity gradients in thestellar disc are small. As far as the internal dust extinction isconcerned, the comparison between data and models indicates that boththe non-active and the S2 galaxies show significant dust extinction, butthey are not optically thick.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

Long slit spectroscopy of a sample of isolated spirals with and without an AGN
We present the kinematical data obtained for a sample of active(Seyfert) and non active isolated spiral galaxies, based on long slitspectra along several position angles in the Hα line region and,in some cases, in the Ca triplet region as well. Gas velocitydistributions are presented, together with a simple circular rotationmodel that allows us to determine the kinematical major axes. Stellarvelocity distributions are also shown. The main result is that activeand control galaxies seem to be equivalent in all kinematical aspects.For both subsamples, the departure from pure circular rotation in somegalaxies can be explained by the presence of a bar and/or of a spiralarm. They also present the same kind of peculiarities, in particular,S-shape structures are quite common near the nuclear regions. Theydefine very similar Tully-Fisher relations. Emission line ratios aregiven for all the detected HII regions; the analysis of the[NII]/Hα metallicity indicator shows that active and non-activegalaxies have indistinguishable disk metallicities. These results arguein favour of active and non-active isolated spiral galaxies havingessentially the same properties, in agreement with our previous resultsbased on the analysis of near infrared images. It appears now necessaryto confirm these results on a larger sample.Based on observations made with WHT operated on the island of La Palmaby ING in the Spanish Observatorio del Roque de Los Muchachos of theInstituto de Astrofísica de Canarias, the European SouthernObservatory (La Silla), Calar Alto Observatory (Almería, Spain)and Las Campanas Observatories (Chile).Table 3 and Figs. \ref{res_cen_u1395}, 5, 7, 9, 11, 13, 15, 17, 19, 21,23, 25, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 and 52 are onlyavailable in electronic form at http://www.edpsciences.orgTable 5 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/475

Extended gas in Seyfert 2 galaxies: implications for the nuclear source
We use long-slit spectroscopic optical data to derive the properties ofthe extended emitting gas and the nuclear luminosity of a sample of 18Seyfert 2 galaxies. From the emission-line luminosities and ratios wederive the density, reddening and mass of the ionized gas as a functionof distance up to 2-4 kpc from the nucleus. Taking into account thegeometric dilution of the nuclear radiation, we derive the radialdistribution of covering factors and the minimum rate of ionizingphotons emitted by the nuclear source. This number is an order ofmagnitude larger than that obtained from the rate of ionizing photons`intercepted' by the gas and measured from the Hα luminosity. Acalibration is proposed to recover this number from the observedluminosity. The HeIIλ4686/Hβ line ratio was used tocalculate the slope of the ionizing spectral energy distribution (SED),which in combination with the number of ionizing photons allows thecalculation of the hard X-ray luminosities. These luminosities areconsistent with those derived from X-ray spectra in the eight cases forwhich such data are available and recover the intrinsic X-ray emissionin Compton-thick cases. Our method can thus provide reliable estimatesof the X-ray fluxes in Seyfert 2 galaxies for the cases where it is notreadily available. We also use the ionizing SED and luminosity topredict the infrared luminosity under the assumption that it isdominated by reprocessed radiation from a dusty torus, and find a goodagreement with the observed IRAS luminosities.

The Unified Model and Evolution of Active Galaxies: Implications from a Spectropolarimetric Study
We extend the analysis presented in Paper I of a spectropolarimetricsurvey of the CfA and 12 μm samples of Seyfert 2 galaxies (S2s). Weconfirm that polarized (hidden) broad-line region (HBLR) S2s tend tohave hotter circumnuclear dust temperatures, show mid-IR spectra morecharacteristic of Seyfert 1 galaxies (S1s), and are intrinsically moreluminous than non-HBLR S2s. The levels of obscuration and circumnuclearstar formation, however, appear to be similar between HBLR and non-HBLRS2 galaxies, based on an examination of various observationalindicators. HBLR S2s, on average, share many similar large-scale,presumably isotropic, characteristics with S1s, as would be expected ifthe unified model is correct, while non-HBLR S2s generally do not. Theactive nuclear engines of non-HBLR S2s, then, appear to be truly weakerthan HBLR S2s, which in turn are fully consistent with being S1s viewedfrom another direction. There is also evidence that the fraction ofdetected HBLRs increases with the radio power of the active galacticnucleus. Thus, all S2 galaxies may not be intrinsically similar innature, and we speculate that evolutionary processes may be at work.

Iron Is Not Depleted in High-Ionization Nuclear Emission-Line Regions of Active Galactic Nuclei
To examine whether or not high-ionization nuclear emission-line regions(HINERs) in narrow-line regions of active galactic nuclei are dusty, wefocus on two high-ionization forbidden emission lines, [Fe VII]λ6087 and [Ne V] λ3426. We perform photoionization modelcalculations to investigate possible dependences of the flux ratio of[Fe VII] λ6087/[Ne V] λ3426 on various gas properties, inorder to investigate how useful this flux ratio is to explore the dustabundances in HINERs. Based on our photoionization model calculations,we show that the observed range of the flux ratio of [Fe VII]λ6087/[Ne V] λ3426 is consistent with the dust-freemodels, while it cannot easily be explained by the dusty models. Thissuggests that iron is not depleted in HINERs, which implies that theHINERs are not dusty. This result is consistent with the idea that theHINERs are located closer than the dust-sublimation radius (i.e., theinner radius of dusty tori) and thus can be hidden by dusty tori whenseen from a edge-on view toward the tori, which is also suggested by theAGN-type dependence of the visibility of high-ionization emission lines.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Comparisons of Infrared Colors and Emission-line Intensities between Two types of Seyfert 2 Galaxies
We study the relation between the infrared colors, [OIII] emissionlines, gaseous absorbing column density (NH),and thedetectability of the polarized (hidden) broad-line region (HBLR) in alarge sample of 75 Seyfert 2 galaxies (Sy2s). From the indicators ofstar-formation activity, f60/f100 andLFIR/LB, we find some evidence that the Sy2swithout HBLR show higher star-formation activities than those with HBLR,in agreement with previous prediction. Also, we confirm that the HBLRSy2s tend to have a larger luminosity ratio of the core to the hostgalaxy, suggesting that the HBLR Sy2s display more powerful AGNactivity. However, the level of obscuration found in previous papers isnearly indistinguishable between the two types of Sy2s. The resultssupport the statement that the non-HBLR Sy2s, with a weaker corecomponent and a stronger star-formation activity component, areintrinsically different from the HBLR Sy2s, which are Sy1 systems with ahidden powerful AGN core and a low star-formation activity. Theindications are that the non-HBLR Sy2s might be at an earlierevolutionary phase than the HBLR Sy2s.

Optical Photometry and the Continuum of Active Galactic Nuclei
In this paper, the continuum emission of active galactic nuclei isstudied using broadband B, V, R, and I photometry. The nuclearcontribution is estimated from the observations using two differentapproaches. In the first one, the images are deconvolved by the seeingprofile and the corrected images are used to derive the nuclearcontribution. In the second method, in order to extract the stellarcontribution, a de Vaucouleurs brightness profile is assumed for thebulge. After subtraction of this component, the total nuclear emissionis obtained from the corrected image. Both methods indicate that thestellar contribution is dominant. The average contribution of thefeatureless continuum to the total observed continuum is 30% in the fourbands. We show that over 2 orders of magnitude the Hαemission-line luminosity correlates with the continuum emission in allthe observed bands. As a consequence, the galaxies in the sample musthave similar color index. This result provides a method to estimate thereddening correction for the nuclear continuum, which we found to belower than the emission-line extinction correction estimated from theobserved Hα/Hβ observed line ratio.

Seyfert 2 Galaxies with Spectropolarimetric Observations
We present a compilation of radio, infrared, optical, and hard X-ray(2-10 keV) data for a sample of 90 Seyfert 2 galaxies (Sy2s) withspectropolarimetric observations (41 Sy2s with detection of polarizedbroad lines [PBLs] and 49 without PBLs). Compared to Sy2s without PBLs,Sy2s with PBLs tend to be earlier type spirals and show warmermidinfrared color and significant excess of emissions (including thehard X-ray [2-10 keV], [O III] λ5007, infrared [25 μm], andradio). Our analyses indicate that the majority of Sy2s without PBLs arethose sources having less powerful active galactic nucleus (AGN)activities, most likely caused by a low accretion rate. It implies thatthe detectability of the polarized broad emission lines in Sy2s maydepend on their central AGN activities in most cases. Based on theavailable data, we find no compelling evidence for the presence of twotypes of Sy2s; one of which has been proposed to be intrinsicallydifferent from Sy2s claimed in the unification model.

The Far-Infrared Energy Distributions of Seyfert and Starburst Galaxies in the Local Universe: Infrared Space Observatory Photometry of the 12 Micron Active Galaxy Sample
New far-infrared photometry with ISOPHOT aboard the Infrared SpaceObservatory (ISO) is presented for 58 galaxies with homogeneouspublished data for another 32 galaxies, all belonging to the 12 μmgalaxy sample-in total, 29 Seyfert 1 galaxies, 35 Seyfert 2 galaxies,and 12 starburst galaxies, or about half of the 12 μm active galaxysample, plus 14 normal galaxies for comparison. ISO and InfraredAstronomical Satellite (IRAS) data are used to define color-colordiagrams and spectral energy distributions (SEDs). Thermal dust emissionat two temperatures (one cold at 15-30 K and one warm at 50-70 K) canfit the 60-200 μm SED, with a dust emissivity law proportional to theinverse square of the wavelength. Seyfert 1 galaxies and Seyfert 2galaxies are indistinguishable longward of 100 μm, while, as alreadyseen by IRAS, the former have flatter SEDs shortward of 60 μm. A mildanticorrelation is found between the [200-100] color and the ``60 μmexcess.'' We infer that this is due to the fact that galaxies with astrong starburst component and thus a strong 60 μm flux have asteeper far-infrared turnover. In non-Seyfert galaxies, increasing theluminosity corresponds to increasing the star formation rate, whichenhances the 25 and 60 μm emission. This shifts the peak emissionfrom around 150 μm in the most quiescent spirals to shorter than 60μm in the strongest starburst galaxies. To quantify these trendsfurther, we identified with the IRAS colors three idealized infraredSEDs: pure quiescent disk emission, pure starburst emission, and pureSeyfert nucleus emission. Even between 100 and 200 μm, the quiescentdisk emission remains much cooler than the starburst component. Seyfertgalaxies have 100-200 μm SEDs ranging from pure disks to purestarbursts, with no apparent contribution from their active nuclei atthose wavelengths. Based on observations with ISO, an ESA project withinstruments funded by ESA Member States (especially the PI countries:France, Germany, the Netherlands, and the United Kingdom) with theparticipation of ISAS and NASA.

Nested and Single Bars in Seyfert and Non-Seyfert Galaxies
We analyze the observed properties of nested and single stellar barsystems in disk galaxies. The 112 galaxies in our sample comprise thelargest matched Seyfert versus non-Seyfert galaxy sample of nearbygalaxies with complete near-infrared or optical imaging sensitive tolength scales ranging from tens of parsecs to tens of kiloparsecs. Thepresence of bars is deduced by fitting ellipses to isophotes in HubbleSpace Telescope (HST) H-band images up to 10" radius and in ground-basednear-infrared and optical images outside the H-band images. This is aconservative approach that is likely to result in an underestimate ofthe true bar fraction. We find that a significant fraction of the samplegalaxies, 17%+/-4%, have more than one bar, and that 28%+/-5% of barredgalaxies have nested bars. The bar fractions appear to be stableaccording to reasonable changes in our adopted bar criteria. For thenested bars, we detect a clear division in length between thelarge-scale (primary) bars and small-scale (secondary) bars, in bothabsolute and normalized (to the size of the galaxy) length. We arguethat this bimodal distribution can be understood within the framework ofdisk resonances, specifically the inner Lindblad resonances (ILRs),which are located where the gravitational potential of the innermostgalaxy switches effectively from three-dimensional to two-dimensional.This conclusion is further strengthened by the observed distribution ofthe sizes of nuclear rings which are dynamically associated with theILRs. While primary bar sizes are found to correlate with the hostgalaxy sizes, no such correlation is observed for the secondary bars.Moreover, we find that secondary bars differ morphologically from singlebars. Our matched Seyfert and non-Seyfert samples show a statisticallysignificant excess of bars among the Seyfert galaxies at practically alllength scales. We confirm our previous results that bars are moreabundant in Seyfert hosts than in non-Seyfert galaxies and that Seyfertgalaxies always show a preponderance of ``thick'' bars compared to thebars in non-Seyfert galaxies. Finally, no correlation is observedbetween the presence of a bar and that of companion galaxies, evenrelatively bright ones. Overall, since star formation and dustextinction can be significant even in the H band, the stellar dynamicsof the central kiloparsec cannot always be revealed reliably by the useof near-infrared surface photometry alone.

High-resolution radio observations of Seyfert galaxies in the extended 12-μm sample - II. The properties of compact radio components
We discuss the properties of compact nuclear radio components in Seyfertgalaxies from the extended 12-μm AGN sample of Rush et al. Our mainresults can be summarized as follows. Type 1 and type 2 Seyferts producecompact radio components which are indistinguishable in strength andaspect, indicating that their central engines are alike, as proposed bythe unification model. Infrared IRAS fluxes are more closely correlatedwith low-resolution radio fluxes than high-resolution radio fluxes,suggesting that they are dominated by kiloparsec-scale, extranuclearemission regions; extranuclear emission may be stronger in type 2Seyferts. Early-type Seyfert galaxies tend to have stronger nuclearradio emission than late-type Seyfert galaxies. V-shaped extendedemission-line regions, indicative of `ionization cones', are usuallyfound in sources with large, collimated radio outflows. Hidden broadlines are most likely to be found in sources with powerful nuclear radiosources. Type 1 and type 2 Seyferts selected by their IRAS 12-μm fluxdensities have well-matched properties.

Disc scalelengths of non-active and active spiral galaxies
Disc scalelengths rD are determined for a sample of 32non-active and 28 active spiral galaxies from optical CCD images. For 21of the 32 non-active galaxies and 20 of the 28 active galaxies B, V, Rand I data have been obtained, while for the remaining galaxies only Band I images have been taken. For 18 of the 21 non-active galaxies,which are measured in all four passbands, rD decreasessystematically from B to I, whereas such a decrease is found for onlyfour of the 20 active galaxies with BVRI data. For the non-activegalaxies, the ratios rD(B)/rD(I),rD(V)/rD(I) and rD(R)/rD(I)increase systematically with increasing apparent ellipticity ɛof the galaxies. For the active galaxies, no systematic variation of anyof the ratios with increasing ɛ is found. The variation ofrD(B)/rD(I) with ɛ is compared with modelcalculations. For the non-active galaxies, the data are represented bestby a model with a stellar disc that has an intrinsic colour gradient andwith a central optical depth in the B band for face-on view ofτ0B=3. For the active galaxies, the best agreement between data andmodels is found for models with a stellar disc with no intrinsic colourgradient and no dust. The best-fitting model for the non-active galaxiesdoes not reproduce the data of the active galaxies. The main conclusionof this work is that structural differences seem to exist between thediscs of non-active and active galaxies. The non-active galaxies showsignificant colour gradients within their discs, whereas the activegalaxies do not. These gradients are probably caused by a combination ofan intrinsic colour gradient within the stellar disc, and dustextinction. Furthermore, the measurements indicate that the non-activegalaxies show significant dust extinction in the centre, but they areoptically thin in the outer regions. The active galaxies do not seem tohave intrinsic colour gradients within the stellar disc and they areoptically thin throughout the disc.

Circumnuclear Stellar Population, Morphology, and Environment of Seyfert 2 Galaxies: An Evolutionary Scenario
We investigate the relation between the characteristics of thecircumnuclear stellar population and both the galaxy morphology and thepresence of close companions for a sample of 35 Seyfert 2 nuclei.Fifteen galaxies present unambiguous signatures of recent episodes ofstar formation within ~300 pc of the nucleus. When we relate thisproperty to the Hubble type of the host galaxy, we find that theincidence of recent circumnuclear star formation increases along theHubble sequence; it seems to be greater than that in non-Seyfertgalaxies for the early Hubble types S0 and Sa but similar to that innon-Seyfert galaxies for later Hubble types. In both early-type andlate-type Seyfert galaxies, the presence of recent circumnuclear starformation is related to the galaxy morphology in the inner fewkiloparsecs, as observed in Hubble Space Telescope images through thefilter F606W by Malkan et al., who have assigned a late ``inner Hubbletype'' to most Seyfert 2 galaxies with recent circumnuclear starformation. This new classification is due to the presence of dust lanesand spiral structures in the inner region. The presence of recent starformation around Seyfert 2 nuclei is also related to interactions: amongthe 13 galaxies of the sample with close companions or in mergers, ninehave recent star formation in the nuclear region. These correlationsbetween the presence of companions, the inner morphology, and theincidence of recent star formation suggest an evolutionary scenario inwhich the interaction is responsible for sending gas inward, which bothfeeds the active galactic nucleus and triggers star formation. Thestarburst then fades with time and the composite Seyfert 2+starburstnucleus evolves to a ``pure'' Seyfert 2 nucleus with an old stellarpopulation. This scenario can reconcile the hypothesis that the activenucleus in Seyfert galaxies is triggered by interactions with theresults of previous studies, which find only a small excess ofinteracting galaxies in Seyfert samples when compared with non-Seyfertsamples. The large excess can only be found early after the interaction,in the phase in which a composite (Seyfert+starburst) nucleus isobserved.

Empirical Diagnostics of the Starburst-AGN Connection
We examine a representative sample of 35 Seyfert 2 nuclei. Previous workhas shown that nearly half (15) of these nuclei show the direct (butdifficult to detect) spectroscopic signature at optical/near-UVwavelengths of the hot massive stars that power circumnuclearstarbursts. In the present paper we examine a variety of more easilymeasured quantities for this sample, such as the equivalent widths ofstrong absorption features, continuum colors, emission line equivalentwidths, emission line ratios and profiles, far-IR luminosities, andnear-UV surface brightness. We compare the composite starburst+Seyfert 2nuclei to ``pure'' Seyfert 2 nuclei, Starburst galaxies, and normalgalactic nuclei. Our goals are to verify whether the easily measuredproperties of the composite nuclei are consistent with the expectedimpact of a starburst and to investigate alternative less demandingmethods to infer the presence of starbursts in Seyfert 2 nuclei,applicable to larger or more distant samples. We show that starbursts doindeed leave clear and easily quantifiable imprints on the near-UV tooptical continuum and emission line properties of Seyfert 2's. Compositestarburst+Seyfert 2 systems can be recognized by: (1) a strong``featureless continuum'' (FC), which dilutes the Ca II K line from oldstars in the host's bulge to an equivalent width WK<10Å (2) emission lines whose equivalent widths are intermediatebetween starburst galaxies and ``pure'' Seyfert 2's (3) relatively lowexcitation line ratios, which indicate that part of the gas ionizationin these Seyfert 2's (typically ~50% of Hβ) is due tophotoionization by OB stars; (4) large far-IR luminosities(>~1010 Lsolar) (5) high near-UV surfacebrightness (~103 Lsolar pc-2). Thesecharacteristics are all consistent with the expected impact ofcircumnuclear starbursts on the observed properties of Seyfert 2's.Furthermore, they offer alternative empirical diagnostics of thepresence of circumnuclear starbursts from a few easily measuredquantities.

A Composite Seyfert 2 X-Ray Spectrum: Implications for the Origin of the Cosmic X-Ray Background
We present a composite 1-10 keV Seyfert 2 X-ray spectrum derived fromASCA observations of a distance-limited sample of nearby galaxies. All29 observed objects were detected. Above ~3 keV, the composite spectrumis inverted, confirming that Seyfert 2 galaxies as a class have thespectral properties necessary to explain the flat shape of the cosmicX-ray background spectrum. Integrating the composite spectrum overredshift, we find that the total emission from Seyfert 2 galaxies,combined with the expected contribution from unabsorbed type 1 objects,provides an excellent match to the spectrum and intensity of the hardX-ray background. The principal uncertainty in this procedure is thecosmic evolution of the Seyfert 2 X-ray luminosity function. Separatecomposite spectra for objects in our sample with and without polarizedbroad optical emission lines are also presented.

Hidden Broad-Line Seyfert 2 Galaxies in the CFA and 12 μM Samples
We report the results of a spectropolarimetric survey of the CfA and 12μm samples of Seyfert 2 (S2) galaxies. Polarized (hidden) broad-lineregions (HBLRs) are confirmed in a number of galaxies, and several newcases (F02581-1136, MCG -3-58-7, NGC 5995, NGC 6552, NGC 7682) arereported. The 12 μm S2 galaxy sample shows a significantly higherincidence of HBLRs (50%) than its CfA counterpart (30%), suggesting thatthe latter may be incomplete in hidden active galactic nuclei. Comparedto the non-HBLR S2 galaxies, the HBLR S2 galaxies display distinctlyhigher radio power relative to their far-infrared output and hotter dusttemperature as indicated by the f25/f60 color.However, the level of obscuration is indistinguishable between the twotypes of S2 galaxies. These results strongly support the existence oftwo intrinsically different populations of S2 galaxies: one harboring anenergetic, hidden S1 nucleus with a broad-line region and the other a``pure'' S2 galaxy, with a weak or absent S1 nucleus and a strong,perhaps dominating starburst component. Thus, the simple purelyorientation-based unification model is not applicable to all Seyfertgalaxies.

The Multitude of Unresolved Continuum Sources at 1.6 Microns in Hubble Space Telescope Images of Seyfert Galaxies
We examine 112 Seyfert galaxies observed by the Hubble Space Telescopeat 1.6 μm. We find that ~50% of the Seyfert 2.0 galaxies which arepart of the Revised Shapely-Ames (RSA) Catalog or the CfA redshiftsample contain unresolved continuum sources at 1.6 μm. All but acouple of the Seyfert 1.0-1.9 galaxies display unresolved continuumsources. The unresolved sources have fluxes of order 1 mJy,near-infrared luminosities of order 1041 ergs s-1,and absolute magnitudes MH~-16. Comparison non-Seyfertgalaxies from the RSA Catalog display significantly fewer (~20%),somewhat lower luminosity nuclear sources, which could be due to compactstar clusters. We find that the luminosities of the unresolved Seyfert1.0-1.9 sources at 1.6 μm are correlated with [O III] λ5007and hard X-ray luminosities, implying that these sources are nonstellar.Assuming a spectral energy distribution similar to that of a Seyfert 2galaxy, we estimate that a few percent of local spiral galaxies containblack holes emitting as Seyferts at a moderate fraction,~10-1-10-4, of their Eddington luminosities. Wefind no strong correlation between 1.6 μm fluxes and hard X-ray or [OIII] λ5007 fluxes for the pure Seyfert 2.0 galaxies. Thesegalaxies also tend to have lower 1.6 μm luminosities compared to theSeyfert 1.0-1.9 galaxies of similar [O III] luminosity. Either largeextinctions (AV~20-40) are present toward theircontinuum-emitting regions or some fraction of the unresolved sources at1.6 μm are compact star clusters. With increasing Seyfert type thefraction of unresolved sources detected at 1.6 μm and the ratio of1.6 μm to [O III] fluxes tend to decrease. These trends areconsistent with the unification model for Seyfert 1 and 2 galaxies.

Homogenization of the Stellar Population along Late-Type Spiral Galaxies
We present a study of the broadband UBV color profiles for 257 Sbcbarred and nonbarred galaxies, using photoelectric aperture photometrydata from the literature. Using robust statistical methods, we haveestimated the color gradients of the galaxies, as well as the total andbulge mean colors. A comparative photometric study using CCD images wasdone. In our sample, the color gradients are negative (reddish inward)in approximately 59% of the objects, are almost null in 27%, and arepositive in 14%, considering only the face-on galaxies, which representapproximately 51% of the sample. The results do not change, essentially,when we include the edge-on galaxies. As a consequence of this study wehave also found that barred galaxies are overrepresented among theobjects having null or positive gradients, indicating that bars act as amechanism of homogenization of the stellar population. This effect ismore evident in the U-B color index, although it can also be detected inthe B-V color. A correlation between the total and bulge colors wasfound that is a consequence of an underlying correlation between thecolors of bulges and disks found by other authors. Moreover, the meantotal color is the same irrespective of the gradient regime, whilebulges are bluer in galaxies with null or positive gradients, whichindicates an increase of the star formation rate in the central regionsof these objects. We have also made a quantitative evaluation of theamount of extinction in the center of these galaxies. This was doneusing the Wide Field Planetary Camera 2 (WFPC2) and the Near InfraredCamera and Multi-Object Spectrometer (NICMOS) Hubble Space Telescope(HST) archival data, as well as CCD B, V, and I images. We show thatalthough the extinction in the V-band can reach values up to 2 mag inthe central region, it is unlikely that dust plays a fundamental role inglobal color gradients. We found no correlation between color and O/Habundance gradients. This result could suggest that the color gradientsare more sensitive to the age rather than to the metallicity of thestellar population. However, the absence of this correlation may becaused by dust extinction. We discuss this result by considering apicture in which bars are a relatively fast, recurrent phenomenon. Theseresults are not compatible with a pure classical monolithic scenario forbulge and disk formation. On the contrary, they favor a scenario inwhich both these components are evolving in a correlated process inwhich stellar bars play a crucial role. Based partly on observationsmade at the Pico dos Dias Observatory (PDO/LNA-CNPq), Brazil.

Stellar populations in Seyfert 2 galaxies. I. Atlas of near-UV spectra
We have carried out a uniform spectroscopic survey of Seyfert 2 galaxiesto study the stellar populations of the host galaxies. New spectra havebeen obtained for 79 Southern galaxies classified as Seyfert 2 galaxies,7 normal galaxies, and 73 stars at a resolution of 2.2 Å over thewavelength region 3500-5300 Å. Cross-correlation between thestellar spectra is performed to group the individual observations into44 synthesis standard spectra. The standard groups include a solarabundance sequence of spectral types from O5 to M3 for dwarfs, giants,and supergiants. Metal-rich and metal-weak F-K giants and dwarfs arealso included. A comparison of the stellar data with previouslypublished spectra is performed both with the individual spectra and thestandard groups. For each galaxy, two distinct spatial regions areconsidered: the nucleus and the external bulge. Spectroscopic variationsfrom one galaxy to another and from the central to the external regionare briefly discussed. It is found that the central region of a Seyfert2 galaxy, after subtracting the bulge stellar population, always shows anear-UV spectrum similar to one of three representative categories: a)many strong emission lines and only two visible absorption lines (Ca IiK and G band) (Sey2e); b) few emission lines, many absorption lines, anda redder continuum than the previous category (Sey2a); c) an almost flatcontinuum and high-order Balmer lines seen in absorption (Sey2b). Theproportion of Seyfert 2 galaxies belonging to each class is found to be22%, 28%, and 50% respectively. We find no significative differencesbetween morphology distributions of Seyfert 2 galaxies with Balmer linesdetected in absorption and the rest of the sample. This quick lookthrough the atlas indicates that half of Seyfert 2 galaxies harbour ayoung stellar population (about or less than 100 Myr) in their centralregion, clearly unveiled by the high order Balmer series seen inabsorption. Based on observations collected at the European SouthernObservatory, Chile (ESO 65.P-0014(A)). Tables 1-3 and 8 and Fig. A.1(Appendix A) are only available in electronic form athttp://www.edpsciences.org

High-resolution radio observations of Seyfert galaxies in the extended 12-μm sample - I. The observations
We present 8.4-GHz VLA A-configuration observations of 87 sources fromthe mid-infrared-selected AGN sample of Rush et al. These0.25-arcsec-resolution observations allow elongated radio structurestens of pc in size to be resolved, and enable radio components smallerthan 3.5arcsec to be isolated from diffuse galactic disc emission. Whencombined with previous data, matched radio observations covering 90percent of the sample have been collected, and these represent the largestsubarcsecond-resolution radio imaging survey of a homogeneously selectedsample of Seyfert galaxies to date. We use our observations to identifyfive radio-loud AGN in the sample. The nature of the radio emission fromSeyfert nuclei will be discussed in subsequent papers.

The Frequency of Nuclear Star Formation in Seyfert 2 Galaxies
We investigate the detectability of starburst signatures in the nuclearspectrum of Seyfert 2 galaxies by constructing spectral models in thewavelength range λλ3500-4100, combining the spectrum of abulge population (of age ~10 Gyr) with that of younger stellarpopulations, spanning ages from ~3 Myr to 1 Gyr. The major constraintsin the analysis are (1) the continuum ratio λλ3660/4020,which efficiently discriminates between models combining a bulgespectrum with a stellar population younger than ~50 Myr and those witholder stellar populations; (2) the presence of the Balmer lines H8, H9,and H10 in absorption, which are unambiguous signatures of stellarpopulations with ages in the range 10 Myr-1 Gyr for the relevantmetallicities. Their detectability depends both on the age of the youngcomponent and on its contribution to the total flux relative to that ofthe bulge. We also construct models combining the bulge template with apower-law (PL) continuum, which is observed in some Seyfert 2 galaxiesin polarized light, contributing with typically 10%-40% of the flux at4020 Å. We conclude that such continuum cannot be distinguishedfrom that of a very young stellar population (age<=10 Myr),contributing with less than ~0.02% of the mass of the bulge. The modelsare compared with nuclear spectra-corresponding to a radius of 200-300pc at the galaxy-of 20 Seyfert 2 galaxies, in which we specifically lookfor the signatures above of young- to intermediate-aged stellarpopulations. We find them in 10 galaxies, thus 50% of the sample. Butonly in six cases (30% of the sample) can they be attributed to youngstars (age<500 Myr): Mrk 1210, ESO 362-G8, NGC 5135, NGC 5643, NGC7130, and NGC 7582. In the remaining four cases, the signatures arecaused by intermediate-aged stars (~1 Gyr). We find a tendency for theyoung stars to be found more frequently among the late-type Seyfertgalaxies, a well-known effect in the nuclei of normal galaxies. Thistendency is supported by a comparison between the equivalent widths (W)of absorption lines of the nuclear spectra of the Seyfert 2 galaxieswith those of normal galaxies of the same Hubble type. For the late-typegalaxies, the W values of the Seyfert galaxies are within the observedrange of the normal galaxies, suggesting a similar stellar population.On the other hand, the W values are lower than those of the normalgalaxies for seven out of the 11 Seyferts in early-type galaxies.

The QDOT all-sky IRAS galaxy redshift survey
We describe the construction of the QDOT survey, which is publiclyavailable from an anonymous FTP account. The catalogue consists ofinfrared properties and redshifts of an all-sky sample of 2387 IRASgalaxies brighter than the IRAS PSC 60-μm completeness limit(S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10deg, after removing a small number of Galactic sources, the redshiftcompleteness is better than 98per cent (2086/2127). New redshifts for1401 IRAS sources were obtained to complete the catalogue; themeasurement and reduction of these are described, and the new redshiftstabulated here. We also tabulate all sources at |b|>10 deg with noredshift so far, and sources with conflicting alternative redshiftseither from our own work, or from published velocities. A list of 95ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is alsoprovided. Of these, ~20per cent are AGN of some kind; the broad-lineobjects typically show strong Feii emission. Since the publication ofthe first QDOT papers, there have been several hundred velocity changes:some velocities are new, some QDOT velocities have been replaced by moreaccurate values, and some errors have been corrected. We also present anew analysis of the accuracy and linearity of IRAS 60-μm fluxes. Wefind that the flux uncertainties are well described by a combination of0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty.This is not enough to cause the large Malmquist-type errors in the rateof evolution postulated by Fisher et al. We do, however, find marginalevidence for non-linearity in the PSC 60-μm flux scale, in the sensethat faint sources may have fluxes overestimated by about 5per centcompared with bright sources. We update some of the previous scientificanalyses to assess the changes. The main new results are as follows. (1)The luminosity function is very well determined overall but is uncertainby a factor of several at the very highest luminosities(L_60μm>5x10^12L_solar), as this is where the remainingunidentified objects are almost certainly concentrated. (2) Thebest-fitting rate of evolution is somewhat lower than our previousestimate; expressed as pure density evolution with density varying as(1+z)^p, we find p=5.6+/-2.3. Making a rough correction for the possible(but very uncertain) non-linearity of fluxes, we find p=4.5+/-2.3. (3)The dipole amplitude decreases a little, and the implied value of thedensity parameter, assuming that IRAS galaxies trace the mass, isΩ=0.9(+0.45, -0.25). (4) Finally, the estimate of density varianceon large scales changes negligibly, still indicating a significantdiscrepancy from the predictions of simple cold dark matter cosmogonies.

Spectral synthesis of the nuclear regions of Seyfert 2 and radio galaxies
We present the results of an optical spectral synthesis analysis for thenuclei of 20 Seyfert 2 and four radio galaxies, using a base of stellarpopulation templates of different ages and metallicities and a power-lawcontinuum. Compared with the stellar population of elliptical galaxies,we find that Seyfert 2s usually have a smaller contribution from oldmetal-rich stars (age 10 Gyr, Z >= Z_solar), and a largercontribution from stars with ages of 100 Myr. We also find that thecontributions from stars with ages <= 10 Myr and from a power-lawcontinuum are small, rarely exceeding 5 per cent. These results showthat the general assumption of elliptical galaxies as stellar populationtemplates for these objects is incorrect, also implying that the excessblue continuum frequently found in their nuclear spectra is probably dueto this template mismatch. We find a considerable contribution from100-Myr-old stars (~ 5 per cent), which can be interpreted from thepoint of view of models where the fuelling of the AGN is carried out byinteractions/mergers.

Morphology of the 12 Micron Seyfert Galaxies. II. Optical and Near-Infrared Image Atlas
We present 263 optical and near-infrared (NIR) images for 42 1s and 48Seyfert 2s, selected from the Extended 12 μm Galaxy Sample.Elliptically averaged profiles are derived from the images, andisophotal radii and magnitudes are calculated from these. We also reportvirtual aperture photometry that, judging from comparison with previouswork, is accurate to roughly 0.05 mag in the optical, and 0.07 mag inthe NIR. Our B-band isophotal magnitude and radii, obtained from ellipsefitting, are in good agreement with those of Third Reference Catalogueof Bright Galaxies. When compared with the B band, V, I, J, and Kisophotal diameters show that the colors in the outer regions of Seyfertgalaxies are consistent with the colors of normal spirals. Differencesin the integrated isophotal colors and comparison with a simple modelshow that the active nucleus+bulge are stronger and redder in the NIRthan in the optical. Finally, roughly estimated Seyfert disk surfacebrightnesses are significantly brighter in B and K than those in normalspirals of similar morphological type.

The Distribution of Absorbing Column Densities among Seyfert 2 Galaxies
We use hard X-ray data for an ``optimal'' sample of Seyfert 2 galaxiesto derive the distribution of the gaseous absorbing column densitiesamong obscured active nuclei in the local universe. Of all Seyfert 2galaxies in the sample, 75% are heavily obscured (N_H>10^23 cm^-2),and about half are Compton thick (N_H>10^24 cm^-2). Intermediate type1.8-1.9 Seyfert galaxies are characterized by an average N_H much lowerthan ``strict'' Seyfert 2 galaxies. No correlation is found between N_Hand the intrinsic luminosity of the nuclear source. This N_Hdistribution has important consequences for the synthesis of the cosmicX-ray background. In addition, the large fraction of Compton-thickobjects implies that most of the obscuring gas is located within aradius of a few 10 pc from the nucleus.

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Sagittario
Ascensione retta:20h18m17.80s
Declinazione:-44°48'25.0"
Dimensioni apparenti:1.585′ × 1.259′

Cataloghi e designazioni:
Nomi esatti   (Edit)
NGC 2000.0NGC 6890
HYPERLEDA-IPGC 64446

→ Richiesta di ulteriori cataloghi da VizieR