首页     开始     To Survive in the Universe    
Inhabited Sky
    News@Sky     天文图片     收集     论坛     Blog New!     常见问题     新闻     登录  

NGC 5073


目录

图像

上传图像

DSS Images   Other Images


相关文章

Rotational Widths for Use in the Tully-Fisher Relation. I. Long-Slit Spectroscopic Data
We present new long-slit Hα spectroscopy for 403 noninteractingspiral galaxies, obtained at the Palomar Observatory 5 m Hale telescope,which is used to derive well-sampled optical rotation curves. Becausemany of the galaxies show optical emission features that aresignificantly extended along the spectrograph slit, a technique wasdevised to separate and subtract the night sky lines from the galaxyemission. We exploit a functional fit to the rotation curve to identifyits center of symmetry; this method minimizes the asymmetry in thefinal, folded rotation curve. We derive rotational widths using bothvelocity histograms and the Polyex model fit. The final rotational widthis measured at a radius containing 83% of the total light as derivedfrom I-band images. In addition to presenting the new data, we use alarge sample of 742 galaxies for which both optical long-slit and radioH I line spectroscopy are available to investigate the relation betweenthe H I content of the disks and the extent of their rotation curves.Our results show that the correlation between those quantities, which iswell established in the case of H I-poor galaxies in clusters, ispresent also in H I-normal objects: for a given optical size, starformation can be traced farther out in the disks of galaxies with largerH I mass.

The PDS versus Markarian starburst galaxies: comparing strong and weak IRAS emitter at 12 and 25 μm in the nearby Universe
The characteristics of the starburst galaxies from the Pico dos Diassurvey (PDS) are compared with those of the nearby ultraviolet (UV)bright Markarian starburst galaxies, having the same limit in redshift(vh < 7500 km s-1) and absolute B magnitude(MB < -18). An important difference is found: theMarkarian galaxies are generally undetected at 12 and 25 μm in IRAS.This is consistent with the UV excess shown by these galaxies andsuggests that the youngest star-forming regions dominating thesegalaxies are relatively free of dust.The far-infrared selection criteria for the PDS are shown to introduce astrong bias towards massive (luminous) and large size late-type spiralgalaxies. This is contrary to the Markarian galaxies, which are found tobe remarkably rich in smaller size early-type galaxies. These resultssuggest that only late-type spirals with a large and massive disc arestrong emitters at 12 and 25 μm in IRAS in the nearby Universe.The Markarian and PDS starburst galaxies are shown to share the sameenvironment. This rules out an explanation of the differences observedin terms of external parameters. These differences may be explained byassuming two different levels of evolution, the Markarian being lessevolved than the PDS galaxies. This interpretation is fully consistentwith the disc formation hypothesis proposed by Coziol et al. to explainthe special properties of the Markarian SBNG.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

An Hα survey aiming at the detection of extraplanar diffuse ionized gas in halos of edge-on spiral galaxies. I. How common are gaseous halos among non-starburst galaxies?
In a series of two papers we present results of a new Hα imagingsurvey, aiming at the detection of extraplanar diffuse ionized gas inhalos of late-type spiral galaxies. We have investigated a sample of 74nearby edge-on spirals, covering the northern and southern hemisphere.In 30 galaxies we detected extraplanar diffuse emission at meandistances of |z| ~ 1-2 kpc. Individual filaments can be traced out to|z|<=6 kpc in a few cases. We find a good correlation between the FIRflux ratio (S60/S100) and the SFR per unit area(LFIR/D225), based on thedetections/non-detections. This is actually valid for starburst, normaland for quiescent galaxies. A minimal SFR per unit area for the lowestS60/S100 values, at which extended emission hasbeen detected, was derived, which amounts to dotEA25thres = (3.2+/-0.5)*E40ergs-1 kpc-2. There are galaxies where extraplanaremission was detected at smaller values ofLFIR/D225, however, only in combinationwith a significantly enhanced dust temperature. The results corroboratethe general view that the gaseous halos are a direct consequence of SFactivity in the underlying galactic disk.Based on observations collected at the European Southern Observatory,Chile (ESO No. 63.N-0070, ESO No. 64.N-0034, ESO No. 65.N.-0002).

A catalog of warps in spiral and lenticular galaxies in the Southern hemisphere
A catalog of optical warps of galaxies is presented. This can beconsidered complementary to that reported by Sánchez-Saavedra etal. (\cite{sanchez-saavedra}), with 42 galaxies in the northernhemisphere, and to that by Reshetnikov & Combes(\cite{reshetnikov99}), with 60 optical warps. The limits of the presentcatalog are: logr 25 > 0.60, B_t< 14.5, delta (2000) <0deg, -2.5 < t < 7. Therefore, lenticular galaxies havealso been considered. This catalog lists 150 warped galaxies out of asample of 276 edge-on galaxies and covers the whole southern hemisphere,except the Avoidance Zone. It is therefore very suitable for statisticalstudies of warps. It also provides a source guide for detailedparticular observations. We confirm the large frequency of warpedspirals: nearly all galaxies are warped. The frequency and warp angle donot present important differences for the different types of spirals.However, no lenticular warped galaxy has been found within the specifiedlimits. This finding constitutes an important restriction fortheoretical models.

Warps and correlations with intrinsic parameters of galaxies in the visible and radio
From a comparison of the different parameters of warped galaxies in theradio, and especially in the visible, we find that: a) No large galaxy(large mass or radius) has been found to have high amplitude in thewarp, and there is no correlation of size/mass with the degree ofasymmetry of the warp. b) The disc density and the ratio of dark toluminous mass show an opposing trend: smaller values give moreasymmetric warps in the inner radii (optical warps) but show nocorrelation with the amplitude of the warp; however, in the externalradii is there no correlation with asymmetry. c) A third anticorrelationappears in a comparison of the amplitude and degree of asymmetry in thewarped galaxies. Hence, it seems that very massive dark matter haloeshave nothing to do with the formation of warps but only with the degreeof symmetry in the inner radii, and are unrelated to the warp shape forthe outermost radii. Denser discs show the same dependence.

Photometric parameters of edge-on galaxies from 2MASS observations
To analyze the vertical structure of edge-on galaxies, we have usedimages of a large uniform sample of flat galaxies that have been takenduring the 2MASS all-sky survey. The photometric parameters, such as theradial scale length, the vertical scale height, and the deprojectedcentral surface brightness of galactic disks have been obtained. We finda strong correlation between the central surface brightness and theratio of the vertical scale height to the vertical scale length: thethinner the galaxy, the lower the central surface brightness of itsdisk. The vertical scale height does not increase systematically withthe distance from the galaxy center in the frames of this sample.

Supernovae in the nuclear regions of starburst galaxies
The feasibility of using near-infrared observations to discoversupernovae in the nuclear and circumnuclear regions of nearby starburstgalaxies is investigated. We provide updated estimates of the intrinsiccore-collapse supernova rates in these regions. We discuss the problemof extinction, and present new estimates of the extinction towards 33supernova remnants in the starburst galaxy M 82. This is done using Hiand H2 column density measurements. We estimate the molecularto atomic hydrogen mass ratio to be 7.4+/-1.0 in M 82. We have assemblednear-infrared photometric data for a total of 13 core-collapsesupernovae, some unpublished hitherto. This constitutes the largestdatabase of infrared light curves for such events. We show that theinfrared light curves fall into two classes, `ordinary' and `slowlydeclining'. Template JHKL light curves are derived for both classes. Forordinary core-collapse supernovae, the average peak JHKL absolutemagnitudes are -18.4, -18.6, -18.6 and -19.0 respectively. The slowlydeclining core-collapse supernovae are found to be significantly moreluminous than the ordinary events, even at early times, having averagepeak JHKL absolute magnitudes of -19.9, -20.0, -20.0 and -20.4respectively. We investigate the efficiency of a computerized imagesubtraction method in supernova detection. We then carry out a MonteCarlo simulation of a supernova search using K-band images of NGC 5962.The effects of extinction and observing strategy are discussed. Weconclude that a modest observational programme will be able to discovera number of nuclear supernovae.

Warm dust as a tracer of galaxies with gaseous halos
We present radio continuum observations conducted with the VLA and ATCAof a sample of 15 edge-on spiral galaxies. 11 of these galaxies, withinclination angles of i >~ 75o and neither active galacticnuclei nor nearby interaction partners, are suitable for studies of haloproperties in relation to the level of star formation in their disks. In6 of these 11 galaxies radio halos were detected at the angularresolution of the current data. In the remaining cases the presence ofhalo emission could not be proven unambiguously, partly due torelatively low angular resolution. A clear trend was found that galaxieswith radio halos are those with the highest far-infrared 60 mu m to 100mu m flux ratios. This shows the suitability of highf60/f100 ratios of >=0.4 as a reliable tracerof galaxies with high star formation rates and related disk-halointeractions, leading to the presence of extraplanar emission, e.g. fromcosmic ray electrons. The measured exponential scale heights of those 6radio halos that were clearly detected range from about 1.4 to 3.1 kpc.All 4 physically small galaxies in our sample do show extraplanarsynchrotron radio emission, indicating that their more shallowgravitational potential compared to normal-sized spirals mightfacilitate the escape of cosmic-ray electrons from the sites of starformation in their disks. Although the galaxies with the highest energyinput rates into the ISM of their disks are those that have the mostprominent radio halos, there is no direct relation between the haloscale heights and the energy input rates. Instead, the scale heights ofthe radio halos are dominated by the energy losses of the cosmic rayelectrons on their way out of the galaxy disks.

A list of peculiar velocities of RFGC galaxies
A list of radial velocities, HI line widths and peculiar velocities of1327 galaxies from the RFGC catalogue has been compiled using actualobservations and literature data. The list can be used for studying bulkmotions of galaxies, construction of the field of peculiar velocitiesand other tasks.

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

Compact Radio Emission from Warm Infrared Galaxies
In this paper, we present a comparison between the optical spectroscopicdata and the incidence of compact radio emission for a sample of 60 warminfrared galaxies. We find that 80% of optically classified activegalactic nucleus (AGN)-type galaxies contain compact radio sources,while 37% of optically classified starburst galaxies contain compactradio sources. The compact radio luminosity shows a bimodaldistribution, indicating two populations in our sample. The majority ofthe higher radio luminosity class (L>104Lsolar) are AGNs, while the majority of the lower radioluminosity class (L<104 Lsolar) are starbursts.The compact radio emission in the starburst galaxies may be due toeither obscured AGNs or complexes of extremely luminous supernovae suchas that seen in Arp 220. The incidence of optically classified AGNsincreases with increasing far-infrared (FIR) luminosity. Using FIRcolor-color diagrams, we find that globally the energetics of 92% of thegalaxies in our sample are dominated by starburst activity, including60% of galaxies that we find to contain AGNs on the basis of theiroptical classification. The remainder are energetically dominated bytheir AGNs in the infrared. For starburst galaxies, electron densityincreases with dust temperature, consistent with the merger model forinfrared galaxies.

Box- and peanut-shaped bulges. I. Statistics
We present a classification for bulges of a complete sample of ~ 1350edge-on disk galaxies derived from the RC3 (Third Reference Catalogue ofBright Galaxies, de Vaucouleurs et al. \cite{rc3}). A visualclassification of the bulges using the Digitized Sky Survey (DSS) inthree types of b/p bulges or as an elliptical type is presented andsupported by CCD images. NIR observations reveal that dust extinctiondoes almost not influence the shape of bulges. There is no substantialdifference between the shape of bulges in the optical and in the NIR.Our analysis reveals that 45% of all bulges are box- and peanut-shaped(b/p). The frequency of b/p bulges for all morphological types from S0to Sd is > 40%. In particular, this is for the first time that such alarge frequency of b/p bulges is reported for galaxies as late as Sd.The fraction of the observed b/p bulges is large enough to explain theb/p bulges by bars. Partly based on observations collected at ESO/LaSilla (Chile), DSAZ/Calar Alto (Spain), and Lowell Observatory/Flagstaff(AZ/U.S.A.). Tables 6 and 7 are only available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Investigations of the Local Supercluster velocity field. III. Tracing the backside infall with distance moduli from the direct Tully-Fisher relation
We have extended the discussion of Paper II (Ekholm et al.\cite{Ekholm99a}) to cover also the backside of the Local Supercluster(LSC) by using 96 galaxies within Theta <30degr from the adoptedcentre of LSC and with distance moduli from the direct B-bandTully-Fisher relation. In order to minimize the influence of theMalmquist bias we required log Vmax>2.1 and sigmaB_T<0.2mag. We found out that ifRVirgo<20 Mpc this sample fails to follow the expecteddynamical pattern from the Tolman-Bondi (TB) model. When we compared ourresults with the Virgo core galaxies given by Federspiel et al.(\cite{Federspiel98}) we were able to constrain the distance to Virgo:RVirgo=20-24 Mpc. When analyzing the TB-behaviour of thesample as seen from the origin of the metric as well as that withdistances from the extragalactic Cepheid PL-relation we found additionalsupport to the estimate RVirgo= 21 Mpc given in Paper II.Using a two-component mass-model we found a Virgo mass estimateMVirgo=(1.5 - 2)x Mvirial, whereMvirial=9.375*E14Msun forRVirgo= 21 Mpc. This estimate agrees with the conclusion inPaper I (Teerikorpi et al. \cite{Teerikorpi92}). Our results indicatethat the density distribution of luminous matter is shallower than thatof the total gravitating matter when q0<= 0.5. Thepreferred exponent in the density power law, alpha ~2.5, agrees withrecent theoretical work on the universal density profile of dark matterclustering in an Einstein-deSitter universe (Tittley & Couchman\cite{Tittley99}).

The QDOT all-sky IRAS galaxy redshift survey
We describe the construction of the QDOT survey, which is publiclyavailable from an anonymous FTP account. The catalogue consists ofinfrared properties and redshifts of an all-sky sample of 2387 IRASgalaxies brighter than the IRAS PSC 60-μm completeness limit(S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10deg, after removing a small number of Galactic sources, the redshiftcompleteness is better than 98per cent (2086/2127). New redshifts for1401 IRAS sources were obtained to complete the catalogue; themeasurement and reduction of these are described, and the new redshiftstabulated here. We also tabulate all sources at |b|>10 deg with noredshift so far, and sources with conflicting alternative redshiftseither from our own work, or from published velocities. A list of 95ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is alsoprovided. Of these, ~20per cent are AGN of some kind; the broad-lineobjects typically show strong Feii emission. Since the publication ofthe first QDOT papers, there have been several hundred velocity changes:some velocities are new, some QDOT velocities have been replaced by moreaccurate values, and some errors have been corrected. We also present anew analysis of the accuracy and linearity of IRAS 60-μm fluxes. Wefind that the flux uncertainties are well described by a combination of0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty.This is not enough to cause the large Malmquist-type errors in the rateof evolution postulated by Fisher et al. We do, however, find marginalevidence for non-linearity in the PSC 60-μm flux scale, in the sensethat faint sources may have fluxes overestimated by about 5per centcompared with bright sources. We update some of the previous scientificanalyses to assess the changes. The main new results are as follows. (1)The luminosity function is very well determined overall but is uncertainby a factor of several at the very highest luminosities(L_60μm>5x10^12L_solar), as this is where the remainingunidentified objects are almost certainly concentrated. (2) Thebest-fitting rate of evolution is somewhat lower than our previousestimate; expressed as pure density evolution with density varying as(1+z)^p, we find p=5.6+/-2.3. Making a rough correction for the possible(but very uncertain) non-linearity of fluxes, we find p=4.5+/-2.3. (3)The dipole amplitude decreases a little, and the implied value of thedensity parameter, assuming that IRAS galaxies trace the mass, isΩ=0.9(+0.45, -0.25). (4) Finally, the estimate of density varianceon large scales changes negligibly, still indicating a significantdiscrepancy from the predictions of simple cold dark matter cosmogonies.

The Revised Flat Galaxy Catalogue.
We present a new improved and completed version of the Flat GalaxyCatalogue (FGC) named the Revised Flat Galaxy Catalogue (RFGC)containing 4236 thin edge-on spiral galaxies and covering the whole sky.The Catalogue is intended to study large-scale cosmic streamings as wellas other problems of observational cosmology. The dipole moment ofdistribution of the RFGC galaxies (l = 273 degr; b =+19 degr) lieswithin statistical errors (+/-10 degr) in the direction of the LocalGroup motion towards the Microwave Background Radiation (MBR).

The Supernova Rate in Starburst Galaxies
We conducted an optical CCD search for supernovae in a sample of 142bright [m(B) <= 16 mag], nearby (z<=0.03) starburst galaxies overthe period 1988 December to 1991 June, to a limiting R-band magnitude of18. Five supernovae were found, in all cases outside the host galaxy'snucleus. We determine supernova rates (in supernova units or SNU) in theextranuclear regions to be 0.7 h^2 SNU for Type Ia, 0.7 h^2 SNU for TypeIb/c, and ~0.6 h^2 SNU for Type II, with large uncertainties but upperlimits of 2.2 h^2, 2.5 h^2, and 1.7 h^2 SNU, respectively. These ratesare similar to those measured in ``normal'' galaxies. We found noevidence for a supernova-induced brightening in any galactic nucleusand, with a few reasonable assumptions, can place upper limits of 9 h^2,12 h^2, and 7 h^2 SNU on the rates of unobscured supernovae Types Ia,Ib/c, and II, respectively, inside the nuclei.

The Pico DOS Dias Survey Starburst Galaxies
We discuss the nature of the galaxies found in the Pico dos Dias Survey(PDS) for young stellar objects. The PDS galaxies were selected from theIRAS Point Source catalog. They have flux density of moderate or highquality at 12, 25, and 60 μm and spectral indices in the ranges -3.00<= alpha(25, 12) <= + 0.35 and -2.50 <= alpha(60, 25) <=+0.85. These criteria allowed the detection of 382 galaxies, which are amixture of starburst and Seyfert galaxies. Most of the PDS Seyfertgalaxies are included in the catalog of warm IRAS sources by de Grijp etal. The remaining galaxies constitute a homogeneous sample of luminous[log F (L_B/L_ȯ) = 9.9 +/- 0.4] starburst galaxies, 67% of whichwere not recognized as such before. The starburst nature of the PDSgalaxies is established by comparing their L_IR/L_B ratios and IRAScolors with a sample of emission-line galaxies from the literaturealready classified as starburst galaxies. The starburst galaxies show anexcess of FIR luminosity, and their IRAS colors are significantlydifferent from those of Seyfert galaxies-99% of the starburst galaxiesin our sample have a spectral index alpha(60, 25) < -1.9. As opposedto Seyfert galaxies, very few PDS starbursts are detected in X-rays. Inthe infrared, the starburst galaxies form a continuous sequence withnormal galaxies. But they generally can be distinguished from normalgalaxies by their spectral index alpha(60, 25) > -2.5. This colorcutoff also marks a change in the dominant morphologies of the galaxies:the normal IRAS galaxies are preferentially late-type spirals (Sb andlater), while the starbursts are more numerous among early-type spirals(earlier than Sbc). This preference of starbursts for early-type spiralsis not new, but a trait of the massive starburst nucleus galaxies(Coziol et al.). As in other starburst nucleus galaxy samples, the PDSstarbursts show no preference for barred galaxies. No difference isfound between the starbursts detected in the FIR and those detected onthe basis of UV excess. The PDS starburst galaxies represent the FIRluminous branch of the UV-bright starburst nucleus galaxies, with meanFIR luminosity log (L_IR/L_ȯ) = 10.3 +/- 0.5 and redshifts smallerthan 0.1. They form a complete sample limited in flux in the FIR at 2 x10^-10 ergs cm^-2 s^-1.

Toward a Unified Model for the ``Diffuse Ionized Medium'' in Normal and Starburst Galaxies
The ``diffuse ionized medium'' (DIM) makes up a significant fraction ofthe mass and ionization requirements of the interstellar medium of theMilky Way and is now known to be an energetically significant componentin most normal star-forming galaxies. Observations of the ionized gas instarburst galaxies have revealed the presence of gas with strikingsimilarities to the DIM in normal galaxies: relatively low surfacebrightness and strong emission from low-ionization forbidden lines like[S II] lambdalambda6716, 6731. In this paper we analyze Hα imagesand long-slit spectra of samples of normal and starburst galaxies tobetter understand the nature of this diffuse, low surface brightnessgas. We find that in both samples there is a strong inverse correlationbetween the Hα surface brightness (Sigma_Hα) and the [SII]/Hα line ratio at a given location in the galaxy. However, thecorrelation for the starbursts is offset brightward by an order ofmagnitude in Hα surface brightness at a given line ratio. Incontrast, we find that all the galaxies (starburst and normal alike)define a universal relation between line ratio and the relative Hαsurface brightness (Sigma_Hα/Sigma_e, where Sigma_e is the meanHα surface brightness within the galaxy half-light radius). Weshow that such a universal correlation is a natural outcome of a modelin which the DIM is photoionized gas that has a characteristic thermalpressure (P) that is proportional to the mean rate of star formation perunit area in the galaxy (Sigma_SFR). Good quantitative agreement withthe data follows if we require the constant of proportionality to beconsistent with the values of P and Sigma_SFR in the local disk of theMilky Way. Such a scaling between P and Sigma_SFR may arise eitherbecause feedback from massive stars heats the ISM or because Sigma_SFRis determined (or limited) by the mean gas pressure.

The Southern Sky Redshift Survey
We report redshifts, magnitudes, and morphological classifications for5369 galaxies with m_B <= 15.5 and for 57 galaxies fainter than thislimit, in two regions covering a total of 1.70 sr in the southerncelestial hemisphere. The galaxy catalog is drawn primarily from thelist of nonstellar objects identified in the Hubble Space TelescopeGuide Star Catalog (GSC). The galaxies have positions accurate to ~1"and magnitudes with an rms scatter of ~0.3 mag. We compute magnitudes(m_SSRS2) from the relation between instrumental GSC magnitudes and thephotometry by Lauberts & Valentijn. From a comparison with CCDphotometry, we find that our system is homogeneous across the sky andcorresponds to magnitudes measured at the isophotal level ~26 magarcsec^-2. The precision of the radial velocities is ~40 km s^-1, andthe redshift survey is more than 99% complete to the m_SSRS2 = 15.5 maglimit. This sample is in the direction opposite that of the CfA2; incombination the two surveys provide an important database for studies ofthe properties of galaxies and their large-scale distribution in thenearby universe. Based on observations obtained at Cerro TololoInter-American Observatory, National Optical Astronomy Observatories,operated by the Association of Universities for Research in Astronomy,Inc., under cooperative agreement with the National Science Foundation;Complejo Astronomico El Leoncito, operated under agreement between theConsejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; the European Southern Observatory, LaSilla, Chile, partially under the bilateral ESO-ObservatórioNacional agreement; Fred Lawrence Whipple Observatory;Laboratório Nacional de Astrofísica, Brazil; and the SouthAfrican Astronomical Observatory.

The Nature of Starburst Galaxies
Utilizing a large sample of infrared-selected starburst galaxies havingoptical images and long-slit spectra, we explore the interrelationshipsbetween the properties of starbursts and relate these properties tothose of the "host" galaxy. We find that the half-light radius of theHα-emitting region (r_e,Hα_) enters into severalcorrelations that suggest it is physically related to the actualstarburst radius. Most suggestively, the effective IR surface brightness(L_IR_/πr^2^_e,Hα_) correlates strongly with the far-IR colortemperature. This can be reproduced roughly with an idealized model of asurrounding dust screen whose far-IR emissivity is determined by thelocal energy density of UV starburst light. Typical values forr_e,Hα_ are a few hundred pc to a few kpc (with the Hαemission being significantly more compact than the red starlight). Thisconfirms the "circumnuclear" scales of typical starbursts. We show alsothat starbursts seem to obey a limiting IR surface brightness of about10^11^L_sun_ kpc^2^, corresponding to a maximum star formation rate ofabout 20 M_sun_ yr^-1^ kpc^2^ for a normal initial mass function. Weargue that this upper limit suggests that starbursts are self-regulatingin some way. We show that most of these galaxies have relatively normal,symmetric rotation curves. This implies that the galactic disk need notsuffer severe dynamical damage in order to "fuel" a typical starburst.We show also that the starbursts occur preferentially in the innerregion of solid-body rotation. This may reflect both bar-driven inflowof gas to the region between the inner Lindblad resonances and thedominance of gravitational instability over tidal shear in this region.Most of the starbursts reside in galaxies with rotation speeds of120-200 km s^-1^ (compared to 220 km s^-1^ for a fiducial L^*^ galaxylike the Milky Way). The lack of a correlation between galaxy rotationspeed and starburst luminosity means that even relatively modestgalaxies (masses~10% of the Milky Way) can host powerful starbursts. Weargue on the basis of causality that the internal velocity dispersion ina starburst sets an upper limit to the star formation rate. The mostextreme starbursts approach this limit, but most are well below.Finally, we show that the relative narrowness of the nuclear emissionlines in starbursts (relative to the galaxy rotation speed) arisesbecause the gas in the nuclear "bin" usually does not sample fully thesolid-body part of the rotation curve. The narrow lines do notnecessarily imply that the starburst is not in dynamical equilibrium.

Ionized Gas in the Halos of Edge-on Starburst Galaxies: Evidence for Supernova-driven Superwinds
Supernova-driven galactic winds ("superwinds") have been invoked toexplain many aspects of galaxy formation and evolution. Such windsshould arise when the supernova rate is high enough to create a cavityof very hot shock-heated gas within a galaxy. This gas can then expandoutward as a high-speed wind that can accelerate and heat ambientinterstellar or circum-galactic gas causing it to emit optical lineradiation and/or thermal X-rays. Theory suggests that such winds shouldbe common in starburst galaxies and that the nature of the winds shoulddepend on the star formation rate and distribution. In order tosystematize our observational understanding of superwinds (determinetheir incidence rate and the dependence of their properties on the starformation that drives them) and to make quantitative comparisons withthe theory of superwinds, we have analyzed data from an opticalspectroscopic and narrow-band imaging survey of an infrared flux-limited(S_60 microns_ >= 5.4 Jy) sample of about 50 IR-warm (S_60microns_/S_100 microns_ > 0.4), starburst galaxies whose stellardisks are viewed nearly edge-on (b/a ~> 2). This sample containsgalaxies with infrared luminosities from ~10^10^-10^12^ L_sun_ andallows us to determine the properties of superwinds over a wide range ofstar formation rates. We have found that extraplanar emission-line gasis a very common feature of these edge-on, IR-bright galaxies and theproperties of the extended emission-line gas are qualitatively andquantitatively consistent with the superwind theory. We can summarizethese properties as morphological, ionization, dynamical, and physical.1. Morphological properties.-Extraplanar filamentary and shell-likeemission-line morphologies on scales of hundreds of parsecs to 10 kpcare common, there is a general "excess" of line emission along the minoraxis, the minor axis emission-line "excess" correlates with "IRactivity," and the minor axis emission-line "excess" also correlateswith the relative compactness of the Hα emission. 2. Ionizationproperties.-Line ratios become more "shocklike" (high ratios of [N II]λ6583/Hα, [S II] λλ6716, 6731/Hα, and[O I] λ6300/Hα) at more extreme IR properties, the most"shocklike" line ratios occur far out along the minor axis, "shocklike"line ratios corresponds to broad emission lines, and the most extremeline ratios correspond to the most extreme IR properties, especially forthe emission-line gas farthest out along the minor axis. 3. Dynamicalproperties.-Lines are broader along the minor axis than along the majoraxis, line widths correlate with the "IR activity," line widthscorrelate with line ratios, line widths do not correlate with rotationspeed, minor axis shear (a measure of the systematic velocity changealong the minor axis) correlates with "IR activity," minor axis shearcorrelates with axial ratio and implies that a face-on galaxy would havean outflow/inflow speed of 170_-80_^+150^ km s^-1^, and the starburstsshow statistically blueward line profile asymmetries. 4. Physicalproperties.-Pressures in the nuclei of these galaxies are 3 orders ofmagnitude higher than the ambient pressure in the interstellar medium ofour galaxy, and the pressure falls systematically with radius. Whilenone of these results are in themselves proof of the superwind model, webelieve that when the results are taken as a whole, the superwindhypothesis is very successful in explaining what we have observed. Inaddition, these results have implications for galaxy evolution and thenature of the intergalactic medium. Those galaxies with the bestevidence for driving superwinds are those with large IR luminosities(L_IR_ ~> 10^44^ ergs s^-1^), large IR excesses (L_IR_/L_OPT_ ~>2), and warm far-IR colors (S_60 microns_/S_100 microns_ ~> 0.5).Integrating over the local far-IR luminosity function for galaxiesmeeting the above criteria, multiplying by the age of the universe, andthen dividing by the local space density of galaxies implies thatsuperwinds have carried out ~5 x 10^8^ M_sun_ in metals and 10^59^ ergsin kinetic plus thermal energy per average (Schecter L^*^) galaxy overthe history of the universe. We note that these two quantities areapproximately equal to the mass of metals contained inside an averagegalaxy and the gravitational binding energy of an average galaxy,respectively. Even with the conservative assumptions of this calculation(we have neglected that star formation rates were presumably higher inthe early universe), it is obvious that superwinds may have a majorimpact on the evolution of individual galaxies and the intergalacticmedium by injecting mass, metals, and kinetic energy into the galactichalo and potentially the intergalactic medium.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

A comparative study of morphological classifications of APM galaxies
We investigate the consistency of visual morphological classificationsof galaxies by comparing classifications for 831 galaxies from sixindependent observers. The galaxies were classified on laser print copyimages or on computer screen using scans made with the Automated PlateMeasuring (APM) machine. Classifications are compared using the RevisedHubble numerical type index T. We find that individual observers agreewith one another with rms combined dispersions of between 1.3 and 2.3type units, typically about 1.8 units. The dispersions tend to decreaseslightly with increasing angular diameter and, in some cases, withincreasing axial ratio (b/a). The agreement between independentobservers is reasonably good but the scatter is non-negligible. In spiteof the scatter, the Revised Hubble T system can be used to train anautomated galaxy classifier, e.g. an artificial neural network, tohandle the large number of galaxy images that are being compiled in theAPM and other surveys.

Ionized gas in the halos of edge-on, starburst galaxies: Data and results
We present narrowband H-alpha and broadband R images, as well aslong-slit spectra oriented along the minor and major axes of a sample ofabout 50 edge-on (a/b greater than or equal to 2), infrared-warm(S60 microns/S100 microns greater than 0.04),infrared-bright S60 microns greater than or equal to 5.4 Jygalaxies. The infrared luminosity of the sample ranges over1010 - 1012 solar luminosity. The spatiallyresolved spectroscopy includes the measurement of velocity relative tothe nuclear velocity, full width at half-maximum, total integrated fluxin the profile (for those spectra taken under photometric conditions)for the lines (N II) lambda lambda 6548, 6583, (O I) lambda 6300,H-alpha, and (S II) lambda lambda 6716, 6713 and line ratios as afunction of slit position along both the major and minor axes. Theresolution of the spectra are between about 3 and 5 A. The spectroscopicdata are presented for 5 bins along each axis -- a nuclear bin that is asum of the CCD rows that cover the half-light diameter centered on thenucleus of the galaxy, two near-nuclear bins which are sums of the CCDrows that cover from one to two half-light radii on each side of thenucleus, and two off-nuclear bins which are sums of the rows at nucleardistances greater than two half-light radii on each side of the nucleus.Additionally, we present recession velocities, nuclear line asymmetries,rotation speeds, minor axis velocity shears, H-alpha luminosities,R-band absolute magnitudes, minor axis H-alpha `excess' and effectiveradii of the galaxies in h-alpha and the R continuum. We deferdiscussion of the properties of the emission-line gas and theircorrelation with the infrared properties of this sample of galaxies to alater paper and limit ourselves to a presentation of the data andanalysis.

Multiwavelength Energy Distributions and Bolometric Luminosities of the 12 Micron Galaxy Sample
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...453..616S&db_key=AST

A volume-limited sample of IRAS galaxies to 4000 km/s, 3: CCD photometry from Palomar and Tololo observatories
An all-sky, quasi-volume-limited sample of 251 spiral galaxies within4000 km/s has been extracted from the redshift survey of InfraredAstronomy Satellite (IRAS) galaxies by Strauss (1992). Distance modulifor these objects estimated via the Tully-Fisher (TF) method allow thepeculiar velocity field and the cosmological density parameter to beconstrained within this volume. The TF relation we exploit relatesdeprojected neutral hydrogen line width to near-infrared luminosity.Herein we present I and V band photometry for 159 members of this sampleobtained with charge coupled device (CCD) cameras at Palomar and Tololoobservatories. Image processing and photometric calibration proceduresare described. Twenty seven objects with multiple calibratedobservations suggest that isophotal I band magnitudes are reproduced toequal to or less than 0.05 mag precision at sigmaI = 23.5 magarcsec-2, and that systematic run-to-run offsets are limitedto equal to or less than 0.05 I mag.

The extended 12 micron galaxy sample
We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.

Satellites of spiral galaxies
We present a survey of satellites around a homogeneous set of late-typespirals with luminosity similar to that of the Milky Way. On average, wefind fewer than 1.5 satellites per primary, but we argue that we cantreat the survey as an ensemble and so derive the properties of the haloof a 'typical' isolated spiral. The projected density profile of theensemble falls off approximately as 1/r. Within 50 kpc the azimuthaldistribution of satellites shows some evidence for the 'Holmbergeffect', an excess near the minor axis of the primary; however, atlarger projected distances, the distribution appears isotropic. There isa weak but significant correlation between the size of a satellite andits distance from its primary, as expected if satellites are tidallytruncated. Neither Hubble type nor spectral characteristics correlatewith apparent separation. The ensemble of satellites appears to berotating at about 30 km/s in the same direction as the galactic disk.Satellites on prograde orbits tend to be brighter than those onretrograde orbits. The typical velocity difference between a satelliteand its primary shows no clear dependence either on apparent separation,or on the rotation speed of the primary. Thus our survey demonstratesthat isolated spiral galaxies have massive halos that extend to manyoptical radii.

Flat galaxy catalogue
A systematic search for disklike edge-on-galaxies with a diameter largerthan a = 40 arcsec and a major-to-minor axis ratio a/b greater than 7was carried out by means of the Palomar Observatory Sky Survey and theESO/SERC survey. As a result, we present a new catalog of flat galaxies(FGC) containing 4455 objects and covering about 56 percent of the wholesky for the first time. The catalogue is assigned to study large-scalecosmic streamings and other problems of observational cosmology.

提交文章


相关链接

  • - 没有找到链接 -
提交链接


下列团体成员


观测天体数据

星座:室女座
右阿森松:13h19m21.70s
赤纬:-14°50'39.0"
明显尺寸:3.715′ × 0.55′

目录:
适当名称   (Edit)
NGC 2000.0NGC 5073
HYPERLEDA-IPGC 46441

→ 要求更多目录从vizier